
1108 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 9, SEPTEMBER 1995

Subcube Fault Tolerance
in Hypercube Multiprocessors

Yeimkuan Chang, Student Member, IEEE, and Laxmi N. Bhuyan, Senior Member, IEEE

Abstract-In this paper, we study the problem of constructing
subcubes in faulty hypercubes. First a divide-and-conquer tech-
nique is used to form the set of disjoint subcubes in the faulty
hypercube. The concept of irregular subcubes is then introduced
to take advantage of advanced switching techniques, such as
wormhole routing, to increase the sizes of the available subcubes.
We present a subcube partitioning technique to form an irregular
subcube of maximum size. The n-cube containing two faults is
studied first because, in the worst case, two faults are suftlcient to
destroy all the possible regular (n - 1)-cubes. It is shown that the
subcube partitioning technique is able to tolerate [t1 faults while
maintaining a fault-free (n - 1)-cube in a faulty n-cube. In gen-
eral, we show that a fault-free (n - m - 1)-cube is guaranteed
when there are + 1) X 2'" + 2m-' - 1 or fewer faults. We
also develop a two-phase subcube allocation strategy in order to
show the average case performance of our subcube construction
technique. Extensive simulation is conducted to show the effec-
tiveness of the two-phase subcube allocation strategy.

Index Terms-Hypercube, subcube partitioning, fault toler-
ance, wormhole routing.

I. INTRODUCTION

YPERCUBE architecture has received much attention be- H cause of its attractive properties which includes loga-
rithmic network diameter, regularity, fault tolerance, embed-
dability, and multitasking capability [l], [2], [3]. As the size of
a system grows, the probability of some processors or links in
the system failing increases. Hence, executing these hypercube
programs in the presence of faults is a critical issue. In a nor-
mal situation, many parallel programs are executed concur-
rently in different subcubes allocated by the host system [4],
[5] , [6], [7], [8]. The intent of this paper is to develop subcube
allocation strategies in the presence of faults.

This paper attempts to provide strategies to overcome the
effects of faulty elements and simulate a fault-free architecture
on the faulty system. Hastad, Leighton, and Newman [9]
proved that, with a high probability, the faulty hypercube can
simulate the fault-free hypercube with only a constant factor
slowdown. Other researchers studied the fault tolerance of
hypercubes in the worst case of fault distributions [lo], [ll],
[121. The problem of determining the number of faulty proces-
sors and faulty links in an n-cube such that no m-cube is fault-

Manuscript received Aug. 23, 1993; revised Feb. 9, 1995.
Y. Chang is with the Department of Information Management at the

Chung-Hua Polytechnic Institute, Taiwan, Republic of China
L.N. Bhuyan is with the Department of Computer Science, Texas A&M

University, College Station, TX 77843-31 12; e-mail: bhuyan@ cs.tamu.edu.
IEEECS Log Number C95091.

free is considered in [101, [111. Another approach proposed by
Bruck, Cypher, and Soroker [12] uses subcube partitioning. It
has been proven that an n-cube can tolerate more than O(n) arbi-
trarily placed faults with a constant slowdown. In [13], Raghav-
endra, Yang, and Tien also used the subcube partitioning tech-
nique to effectively achieve the embedding of rings, routing, and
global operations in faulty hypercubes. However, none of the
above studies considers the construction of subcubes to preserve
the multitasking capability in a faulty hypercube.

The multitasking capability of the hypercube allows several
incoming tasks or programs to run concurrently in the system.
Concurrency is achieved by assigning different subcubes to these
incoming tasks. The main idea in assigning subcubes to incom-
ing tasks is to avoid interference among different subcubes. This
allocation problem of hypercubes has been studied in the litera-
ture. It was introduced by Chen and Shin [4], using the Gray
code. Other researchers have proposed different strategies to
tackle the problem, including the maximal set of subcubes
(M S S) [5], free list strategy [6], tree collapse (TC) strategy [7],
and graph-based approaches [14], [15]. The full subcube rec-
ognition ability and the efficiency of the allocation algorithms
are the two main issues of the hypercube allocations [161.

In this paper, we address this allocation problem on the n-
cube system with faults. We consider wormhole routing in
addition to store-and-forward routing. The communication
delay between any two nodes is almost the same irrespective
of the distance between the two communicating nodes in the
wormhole routing employed in current commercial n-cube
systems [2], [3], [17]. This is subject to the condition that there
is no interference of the messages on the communicating links.
In this paper, we assume that all the faults are static and are
detected before the reconfiguration algorithm starts. Also, we
consider only node faults, and as a result, the links incident on
the faulty nodes are also discarded. The faulty nodes cannot
perform either computations or communications.

We study how to allocate subcubes in the faulty hypercube
and thus maintain the multitasking capability of the system. A
subcube partitioning technique is presented to facilitate sub-
cube construction and allocation in the presence of faults. No
spare nodes and links are used in the process of constructing
subcubes. By using the subcube partitioning technique, a sub-
cube is first selected, and then the faults in the selected sub-
cube are replaced by the fault-free neighbors in the other sub-
cube. We first discuss the allocation with two faults since, in
the worst case, two faults in an n-cube are sufficient to destroy
every possible regular (n - 1)-cube. The subcube partitioning
technique used for a two-fault case is also applied to overcome
the situation with more than two faults.

0018-9340/95$04.00 Q 1995 IEEE

http://cs.tamu.edu

CHANG AND BHUYAN: SUBCUBE FAULT TOLERANCE IN HYPERCUBE MULTIPROCESSORS 1109

Finally, we develop a two-phase fault-tolerant subcube allo-
cation strategy in the presence of faults. The first phase is the
reconfiguration process based on the subcube partitioning
technique which finds the set of disjoint subcubes in a faulty
hypercube. The second phase applies an existing fault-free
subcube allocation strategy, such as the Buddy strategy, to
each disjoint subcube for assigning the available fault-free
subcubes to the incoming tasks. Simulation results using the
Buddy and single Gray code strategies [4] also show that the
completion time and utilization of the two-phase approaches
are superior to non-reconfiguration approaches.

The rest of the paper is organized as follows. Definitions
and notations are given in Section 11. In Section 111, we show
that the divide-and-conquer technique can be used effectively
to form the set of disjoint subcubes. In Section IV, a subcube
partitioning technique is proposed to construct the irregular
subcubes. A two-phase subcube allocation strategy is pre-
sented in Section V. The experimental results are presented in
Section VI. Concluding remarks are given in the last section.

11. PRELIMINARIES

A hypercube of dimension n, denoted by Q,, consists of 2"
nodes. Q,, can be topologically represented as an
n-dimensional cube in which nodes are located on the 2" verti-
ces of the cube. Each of the 2" nodes is addressed by a distinct
binary string, Z,,-lZ-z ..lo, with bit l i corresponding to dimension
i and Zi E (0, 1). Two nodes are connected by a link if and
only if their addresses differ in exactly one bit. The Hamming
weight of a node in Q,, is defined as the number of ones in its
address.

Each subcube can be represented uniquely as a ternary
string over the set (0, 1, *}, called its address, where * is a
Don't Cure symbol. Specifically, a d-dimensional subcube Qd,
called d-cube, has exactly d *s in its address, as it involves a
group of 2' nodes. For example, OOO**, or equivalently 03*2,
represents the 2-cube formed by nodes 00000, 00010, OOOO1,
and 0001 1 in a 5-cube. We define Qi to be the d-cube that has
the same address as Qd except that the ith bit of QA is comple-
ment of the ith bit of Qd. So, we call Q; as the complementary
d-cube of Qd across dimension i. We refer to the subcube de-
fined above as a regular subcube. We also introduce the fol-
lowing definition.

6 7

0 1

Fig. 1. An example of an irregular 2-cube.

An irregular subcube is defined as a subcube in which there
exist one or more pairs of logically adjacent nodes such that
the physical distance between the adjacent nodes is greater
than one. Fig. 1 gives an example of an irregular 2-cube in a 3-
cube with two faulty nodes. The faulty nodes, 2 and 5, are
marked as shaded circles. The fault-free nodes 0, 1, 3, and 6,
marked as empty circles, are used to form the 2-cube. Since
nodes 0 and 3 are not physically adjacent to node 6, the com-
munication paths between 0 and 6 and between 3 and 6 go
through nodes 4 and 7, respectively. Nodes 4 and 7 are called
intermediate nodes and are marked as triangles.

Efficient point-to-point routing is a key to the performance
of hypercube multiprocessors. The current commercial hyper-
cube multiprocessors are all based on a dimension ordered
(e-cube) routing scheme which assumes a fault-free system [2],
[3]. Since no hardware modification is allowed on the routers
of existing machines, a software approach is needed to route
the messages on faulty systems. As an example, the table-
filling technique [18] can be applied based on the e-cube
routing algorithm. In the table-filling method, the messages are
routed from a source node to a destination node through the
logical path between them. If the logical path is the same as
the path routed by e-cube routing, no change is necessary.
However, if they are different, an intermediate node, called a
bypassing node, is used to receive the message and reroute it
to the destination node. The table records whether or not a
bypassing node is used. A centralized or distributed algorithm
can be used to fill the table with necessary information about
bypassing nodes. If modification on routers is allowed, slightly
modifying the current router design can achieve an optimal
routing performance. According to the proposed subcube par-
titioning technique, the messages entering an input channel of
an intermediate node always go out through a specific output
channel in a reconfigured subcube. Therefore, the input chan-
nel in an intermediate node is directly connected with its cor-
responding output channel. By direct connection, we mean an
extra setting is added in the routers such that the messages
from an input channel are forced to go through its correspond-
ing output channel without executing the e-cube algorithm.

In this paper, we consider two different designs of a node in
the hypercube multiprocessor. Each node is responsible for
both computation and communication in the first design. The
intermediate nodes are not used for computation and are de-
voted entirely to communication in the reconfigured subcube.
In the second node design, each node contains two units,
namely, a computation unit and a communication unit that can
operate independently [2], [3]. The communication unit often
is called a router. The routers have the capability of forward-
ing the messages from other routers toward the destination
nodes. Usually there is an (n + 1) x (n + 1) crossbar switch
inside the router, as shown in Fig. 2 [19], [20]. The switching
interface in routers includes the control logic for enabling the
crossbar switch. One of the input and output channels of the
(n + 1) x (n + 1) crossbar switch is used for connection be-
tween the computation unit and the router. When such a node
design is used, the intermediate nodes in Fig. 1 also can be
used to form other subcubes in addition to providing a path for

1110 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 9, SEPTEMBER 1995

the irregular subcubes. Since using a crossbar is very expen-
sive, an alternative design uses a shared-bus as a logical
crossbar, as does the nCUBE [2].

Routa

Fig. 2. Hypercube node architecture.

The hypercube multiprocessors based on wormhole routing
[21] is considered in this paper. Wormhole technology has
been shown to be insensitive to the distance between the
sender and receiver as long as there is no interference in the
links by other messages. We will assume no such interference
in the system and refer to this property as wormhole routing
property. In the shared-bus router design, data is shifted in and
out of the communication ports one bit per cycle. This bit-
serial data is collected into a complete flit at a receive port and
is then written to memory, if this is its destination, or it is cut-
through to the appropriate output port if it is to be sent on to
another node. When a flit is ready to cut-through to another
node, it must check the next output port to see if it is ready and
then arbitrate for the shared-bus to move the flit. Since arbi-
tration and bus allocation can occur every cycle, and since no
receive port will ask for a cut-through more often than every
36 cycles (because it takes 36 cycles minimum to shift in a flit,
as in nCUBE [2]), the possibility of two or more flits com-
pletely arriving at one router at the same cycle is small. Thus,
multiple input ports can cut through to different output ports
with little or no conflict of messages and the performance dif-
ference between a shared-bus and crossbar switch design is
negligible.

As stated earlier, we will address the fault-tolerant subcube
allocation problem. In [5] , Dutt and Hayes define the maxi-
mum set of subcubes (MSS) to be a set of disjoint free sub-
cubes in a hypercube that is greater than or equal to all other
sets of disjoint subcubes in the same hypercube. A set of dis-
joint subcubes, A, is said to be greater than another set of dis-
joint subcubes, B, if there exists an i such that for all j > i , the
number of subcubes of size j in A is equal to that in B, and the
number of subcubes of size i in A is greater than that in B.
Thus, if we treat busy nodes as the faulty nodes in the faulty
hypercube, the problem of determining the maximum set of
disjoint fault-free subcubes in a faulty hypercube is equivalent
to determining the MSS. However, determining MSS is an

NP-complete problem [5] . Hence, in this paper, we will de-
velop an efficient algorithm to find the set of disjoint sub-
cubes. We use a weight vector, which is defined below, to find
the set of disjoint fault-free subcubes in a faulty hypercube.
Although the set of disjoint fault-free subcubes found by
means of weight vectors may not be the same as the MSS, us-
ing weight vectors is efficient.

We define the weight vector of an n-cube as W = (wl, w2, ..., w,,)
where wi is the number of pairs of faulty nodes such that the
Hamming distance between the two faulty nodes in each pair is
i, for 1 S i I n. The weight vector W = (WI, wz, ..., wn), of an
n-cube is said to be greater than or equal to that of another
n-cube, Z = (zl, z2, ..., z,), if there exists an i such that for all
j I i, wj 2 q. For example, the weight vector of a 3-cube with
three faulty nodes, 000, 010, and 100, is (2, 1, 0) since two
pairs of faulty nodes have a Hamming distance one and one
pair has a Hamming distance of two. The weight vector
(2, 1,O) is greater than that of a 3-cube containing three faulty
nodes at 000, 101, and 11 1, which is (1, 1, 1).

HI. CONSTRUCTION OF REGULAR SUBCUBES

The aim of this section is two-fold. First, we find a subcube
of the maximum size in a faulty hypercube. Secondly, we find
the set of disjoint subcubes (SDS) such that independent in-
coming tasks can run on these disjoint subcubes simultane-
ously. We present an efficient algorithm for constructing SDS
in a faulty hypercube by using weight vectors.

Let us consider the availability of disjoint subcubes while
there are only one or two faulty nodes in an n-cube. For an
n-cube containing one fault, it can be split into two
(n - 1)-cubes, one fault-free (n - 1)-cube and the other faulty
(n - 1)-cube containing one faulty node. If the above splitting
process continues on the faulty subcubes, we can obtain the
SDS composing of a set of subcubes of dimensions from 0 to
n - 1. For an n-cube containing two faults, we first discuss the
worst case scenario; i.e., the two faulty nodes are located at
antipodal positions of the n-cube, and as a result they destroy
all possible (n - 1)-cubes [lo]. In this worst 2-fault case, we
can always obtain two faulty (n - 1)-cubes, each containing
one faulty node. Then according to the result from 1-fault case,
we have the SDS containing two subcubes of dimension i, for
all i = 0 to n - 2. In general, if the Hamming distance of the
two faulty nodes is r for 1 5 r I n, we can obtain the SDS that
contains one subcube of dimension i for all i = r to n - 1 and
two subcubes of dimension j for all j = 0 to r - 2.

For an n-cube with any number of faulty nodes, the algo-
rithm is based on the divide-and-conquer technique and is
given in the procedure Form-SDS in Fig. 3. The n and F de-
note the dimension and the set of faults of the hypercube, re-
spectively. The procedure Form-Regular-n-1-cube returns a
value d, which is a dimension index such that one of the two
(n - 1)-cubes obtained from splitting the n-cube at dimension
d contains the minimum number of faulty nodes compared
with other possible (n - 1)-cubes. We split the n-cube into two
(n - 1)-cubes with faults Fo and F1 at dimension d. The same
algorithm is applied recursively to find all the fault-free sub-

CHANG AND BHUYAN: SUBCUBE FAULT TOLERANCE IN HYPERCUBE MULTIPROCESSORS 1111

cubes. While partitioning the n-cube, if there exist two
(n - 1)-cubes such that both contain the same minimum num-
ber of faults, we solve it as follows. The Hamming distance
between any two faulty nodes in an (n - 1)-cube is first com-
puted. We select an (n - 1)-cube whose weight vector is
greater than or equal to the weight vector of any other
(n - 1)-cube having the same number of faulty nodes. If there
exist more than one (n - 1)-cubes that have the same minimum
number of faulty nodes and same maximum weight vector, we
select the (n - 1)-cube Q,, such that the weight vector of the
complementary (n - 1)-cube of e,,-] is greater than or equal to
the weight vector of the complementary (n - 1)-cube of other
(n - 1)-cubes. However, if there is a tie again, we arbitrarily
select one (n - 1)-cube. The reason for choosing an
(n - 1)-cube with the maximum weight vector is that a large
weight vector actually indicates the degree of the faulty nodes
being close to each other. We shall see below that if the faulty
nodes are close to each other then the probability of forming a
large subcube inside the (n - 1)-cube becomes large. Notice
that the two if statements in Lines 2 and 5 of Fig. 3 are the
conditions that terminate the recursion.

Procedure FormSDS(n, F)
/* n is the dimension of the hypercube and F is the set of faults */
begin

1
2
3
4 else FormSDS(n - l,Fo);
5
6
7 else FormSDS(n - 1,Fl);

d := FormR.egularnl-cube(n, F, Fo, Fl);
if IF01 = 0 then

SDS := SDS U *n-d-lO*d;

if IFTI = 0 then
SDS := SDS U *n-d-ll*d;

end

Fig. 3. Forming the set of disjoint regular subcubes.

6 7 14 15

1

Fig. 4. Selection of a dimension for constructing regular subcubes.

EXAMPLE 1: Fig. 4 shows a 4-cube containing 5 faulty nodes,
marked as shaded circles. Fig. 4a and b illustrate that the
4-cube is split into two 3-cubes along dimensions 2 and 3,
respectively. It may be seen that two 3-cubes, O*** of

Fig. 4a and *1** of Fig. 4b, have the same minimum num-
ber of faulty nodes which is 2. The 3-cube, *1* * is selected
since the weight vector of *O**, the complementary 3-cube
of *1**, is (2, 1, 0), which is greater than (1, 0, 2), the
weight vector of the complementary 3-cube of O***. In
other words, dimension 2 is selected for splitting the n-cube.
After dimension d is selected, the procedure Form-SDS is
continued for each (n - 1)-cube until the subcube contains
no faults or all the processors in the subcube are faulty.
Thus, we obtain two 2-cubes, one 1-cube, and one 0-cube,
which are better than one 2-cube, three 1-cubes, and one
0-cube obtained by splitting dimension 3 first.
The time complexity of Form-SDS is analyzed as follows.

Form-Regular-n-1-cube takes O(IF12 x n2) time units since
O(IN2 x n) time units are used for computing the Hamming
distance of O(lF12) pairs of faulty nodes and 2n (n - 1)-cubes
are considered. The time taken from line 2 to line 7 in Fig. 3
depends on the locations of faulty nodes. Consider one ex-
treme case where an n-cube with IFI faults can only be split
into two (n - 1)-cubes with faults each. Recursively calling
Form-SDS log IFI times is sufficient to form the SDS. Thus,
the time complexity of Form-SDS T(n, 14) = O(Iq2 x n2)

+ T(n-1, y) . As a result, T(n, IFI) = O(IF13 x n2). Consider
another extreme case where all IFI faults locate in a
log IN-cube. Calling Form-SDS (n - log IFI) times is sufficient
to form the SDS. Thus, the time complexity of Form-SDS
T(n, IFI) = O((n - log IFI) x IF12 x n2). If log IFI is much smaller
than n, the complexity of Form-SDS is O(IF12 x n3). Assume
that IFI = O(n). The time complexity of Form-SDS is O(ns)
since the time complexities of all the other possible cases are
between the ones of above two extreme cases. We shall see
that Form-SDS does not guarantee to find the maximum set of
subcubes (MSS) introduced by Dutt and Hayes [5] . However,
our method, shown in Fig. 3, is efficient whereas finding the
MSS is an NP-hard problem.

Let us analyze the maximum number of faults that the pro-
cedure Form-SDS can tolerate in order to maintain a fault-free
subcube. After calling Form-SDS once, there exists an
(n - 1)-cube containing at most LqJfaulty nodes. Thus

Form-SDS can continue m times until the finally selected
(n - m)-cube contains only one fault, for IFI I 2". Obviously, a
fault-free (n - m - 1)-cube is available in an n-cube containing
IFI I 2" faults, for n 2 m + 1. However, if n is much larger than
m, we derive a better result as follows.
LEMMA 1. Given 2"-'faulty nodes in an n-cube, there always

exists a fault-free 1-cube except when the Hamming weights
of the faulty nodes are all even or all odd.

PROOF. If the two nodes at the ends of an edge are both
healthy, the lemma follows. Next, suppose that the two
nodes at the ends of an edge e are both faulty. Then look at
the 2"' edges in the same dimension as e. So at least one of
these 2"' edges has both ends healthy. The lemma follows.

1112 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 9, SEPTEMBER 1995

Now suppose no edge has its two ends both healthy or both
faulty. Therefore, a node is healthy if and only if its neigh-
bors are all faulty. Then, all odd weighted nodes are healthy
and all even weighted nodes are faulty or vice versa. 0

LEMMA 2. Given 2" or fewer faulty nodes in an n-cube, where
n 2 m + 2 and m 2 2, there always exists a healthy
(n - m)-cube in the n-cube.

PROOF. We only have to consider the case when there are ex-
actly 2" faulty nodes. Since 2" 2 4, we claim that at least
two faulty nodes have the same bit value at one or more di-
mension of their addresses. For example, the two faulty
nodes, 0000 and 1101, have the same bit value, 0, at di-
mension 1. In fact, for each node, there is exactly one node,
i.e., its corresponding antipodal node, that has a different bit
value at all dimensions although we have 2" 2 4 faulty
nodes.
Let tl and t2 be faulty nodes having the same bit value at
dimension d. We partition the n-cube into 2m (n - m)-cubes
such that dimension d is internal to these (n - m)-cubes. So,
some (n - m)-cube contains at least two faulty nodes tl and
tz. As a result, some other (n - m)-cube must be completely

THEOREM 1. There must be at least 2" + 2"2faulty nodes in
an n-cube in order to destroy all the possible (n - m)-cubes,
where n 2 m + 2, and m 2 2.

PROOF. We prove that there exists an (n - m)-cube in an
n-cube with 2" + 2"-' - 1 faulty nodes. By partitioning the
n-cube into 2"-2 (n - m + 2)-cubes, there must exist an
(n - m + 2)-cube which contains at most 4 faulty nodes.
Thus, according to Lemma 2, there exists a fault-free
(n - m)-cube in the (n - m + 2)-cube with 4 faulty nodes
where n 2 m + 2. 0
Theorem 1 essentially states that more faults can be toler-

ated for maintaining a fault-free (n - m)-cube if n is much
larger than m. The bigger the n-cube, the more the chance we
can form a bigger subcube. The minimum number of faulty
nodes that causes no available fault-free (n - m)-cube is
greater than or equal to 2" + 2"-' according to Theorem 1. The
number of faulty nodes that can be tolerated by our method is
not as good as the lower bound provided in [lo], which is
0(2"-' x rl.6log(n - m + 3) - 2.1 loglog(n - m + 3) - 4.51).
However, the proposed subcube partitioning technique gives
us an efficient way to find the subcubes, whereas no procedure
has been provided in [101 for finding the subcubes to meet the
lower bound.

healthy. 0

Iv. CONSTRUCTION OF IRREGULAR SUBCUBES

In this section, we develop a subcube partitioning technique
so that the maximum subcube size can be greatly increased for
the same number of faulty nodes. To construct an irregular
subcube of dimension d, the underlying principle is to find a d-

We refer to the replacing nodes in the complementary d-cube
as the image nodes of faulty nodes in Qd. Since the image
nodes in the complementary d-cube of Qd replace the faulty
nodes in Q d , the paths between the neighboring nodes of the
faulty nodes and the image nodes must be fault-free.

In the terminology of graph embedding, the subcube parti-
tioning technique attempts to embed a fault-free (n - 1)-cube
into a faulty n-cube. Thus, the subcube partitioning technique
is a dilation-2 and congestion-1 embedding.l The load of this
embedding depends on the number of faulty nodes in the sys-
tem. The proposed subcube partitioning technique utilizes the
unused links to form the disjoint subcubes of different sizes.
Thus, the tasks running on the subcubes do not interfere with
each other. For simplicity, let us start with the situation when
there are only two faults in an n-cube. Later on, we will extend
the results to an n-cube with more faults. It is known that two
faulty nodes at antipodal positions are sufficient to destroy all
the possible (n - 1)-cubes [lo]. Thus, we first demonstrate
how our subcube partitioning technique guarantees an
(n - 1)-cube in an n-cube with two faults.

Without loss of generality, assume that the two faulty nodes
in an n-cube are 0" and 1". The regular (n-1)-cube, I*"', is
first selected. Then a fault-free irregular (n-1)-cube can be
constructed from I*"' by replacing the faulty node 1" with its
image node 01"' in O*"-*. The links between 01"' and its
neighbors and the links between the neighbors of 01"' and the
corresponding neighbors of 1" are utilized to form the fault-
free (n-1)-cube. Let us consider the general case of an n-cube
with two faults, fo and fi, at any locations. Assume that the
distance betweenfo andfi is r. Then we can easily find disjoint
regular subcubes of dimension d for r I d < n by splitting the
n-cube across dimensions at which the bit values of fo and fi
are the same. The remaining faulty subcube is r-dimensional
with two faulty nodes at antipodal positions. It is easy to verify
that the remaining faulty r-cube has no interference on these
regular subcubes that were addressed. The following example
shows how our technique is applied to the 2-fault case.
EXAMPLE 2. Assume that there are two faulty nodes at antipo-

dal positions of a 4-cube, Le., 0000 and 1111 as shown in
Fig. 5. First, the 3-cube 1*** is selected. Then the faulty
node 11 11 in 1 *** is replaced by its image node 01 11 in the
other 3-cube. An irregular 3-cube is formed by the links
shown as bold lines and the nodes marked with Label 3 in
the parentheses. The intermediate nodes are nodes 0011,
0101, and 0110. Thus, intermediate nodes may or may not
be used to form smaller disjoint subcubes depending on the
node design. The intermediate nodes are not used to form
other subcubes in the design where nodes are responsible
for both computation and communication. Thus, the three
intermediate nodes are wasted. If the intermediate nodes
have separate routers as shown in Fig. 2, a 2-cube consisting
of nodes 0100, 0101, 0110, and 0011 can be formed. The
remaining 2 nodes, 0001 and 0010, form two 0-cubes.

cube, Qd, such that the faulty nodes in Qd can be replaced by
some neighbors in a complementary d-cube of Qd.

AS shown in Fig. 1, the logical topology of Qd is maintained.

1. Dilation of an embedding is defined as the maximum physical distance
between two logically adjacent nodes. The congestion and load of an embed-
ding are defined as the maximum number of logical links and nodes sharing a
physical link and node, respectively.

CHANG AND BHUYAN: SUBCUBE FAULT TOLERANCE IN HYPERCUBE MULTIPROCESSORS 1113

Fig. 5. Subcube allocations of 4-cube with two faults at antipodal positions.

To generalize the above result, we first have the following
theorem which assumes that the intermediate nodes cannot be
used and N(n) is the set of disjoint fault-free subcubes in an
n-cube containing two faults located at antipodal positions.
THEOREM 2. Given two faulty nodes a t the antipodal positions

of an n-cube,
"-3

N(n) = Qn-i + N(n -2) + x(kQn-k-3).

PROOF. Consider an n-cube with two faults 0" and 1" at antipo-
dal positions. As stated above, an irregular (n - 1)-cube can
be obtained by replacing the faulty node 1" in l**' with its
image node 01"' in O*"-'. Since the n - 1 intermediate
nodes cannot be used to construct the other subcubes, the
remaining (n - 1)-cube can be treated as an (n - 1)-cube
containing n + 1 faulty nodes, which are 0", Ol"', and all
the neighbors of node 01"' in O*"-', Le., 01'01""2 for
0 I i I n - 2. The remaining faulty (n - 1)-cube can be fur-
ther divided into an (n - 2)-cube containing two faults at
antipodal positions, and an (n - k)-cube containing one
fault, for all k = 3 to n - 1. Notice that an (n - k)-cube with
one fault leads to a group of fault-free disjoint subcube of
dimension n - k - i, where 1 S i I n - k. If we sum all the
subcubes of the same size up, the theorem is proved. 0
For the node design with router, we consider the general case

of an n-cube with two faults,& andfi, whose distance is r. Then
we can easily find disjoint regular subcubes of dimension d for
r I d c n by splitting the n-cube across dimensions at which the
bit values off0 andfi are the same. The remaining faulty subcube
is r-dimensional with two faulty nodes at antipodal positions.
Without loss of generality, assume that faulty node& is 1-0"
andfi is 1 T " . An irregular (r - 1)-cube can be constructed as
described previously by selecting the (r - 1)-cube, 1"-'0*"', and
replacing node 1"O' with its image node, lwlOr-'. The remain-
ing (r - 1)-cube, , can be treated as an (r - 1)-cube with
two faulty nodes at antipodal positions l"+'Or-' and 1"+'1"'.
This will avoid the interference between the already constructed
regular and irregular subcubes, and any new subcubes to be
formed. Fig. 5 shows an example for r = 4. By induction, the
following theorem is derived.

k=l

construction has similar characteristics of a 1-fault case in
regular subcube construction. The foregoing results solve the
worst case problem for an n-cube with two faulty nodes at an-
tipodal positions, while maintaining a fault-free (n - 1)-cube.
However, our aim is to find the maximum number of faulty
nodes under our proposed subcube partitioning technique for a
fault-free (n - 1)-cube to exist in a faulty n-cube. Remember
that in the 2-fault case, a certain (n - 1)-cube, is first se-
lected. By careful observation, we have the following criteria
to select an (n - 1)-cube such that the faulty nodes in the se-
lected (n - 1)-cube, en-,, can be replaced by the fault-free
nodes in the complementary (n - 1)-cube, QA-l, and also the
hypercube topology is maintained.

1) If there are two faulty nodes that have a distance of 1 or 2
between them, then should contain either none or
both of these two faulty nodes.

contains two faulty nodes that have a distance of 2
between them, then the nodes, which are adjacent to both
of these two faulty nodes in Q,l must be replaced by
their fault-free image nodes in QA-l.

3) The replacing fault-free nodes cannot have more than one
faulty neighbor.

Criterion 1 rules out the following two situations. First, a
faulty node in has a faulty image node in Qw1'. This situa-
tion causes the replacing node to be faulty. The second situa-
tion is that the image node is fault-free, but one of the neigh-
bors of the image node is faulty. This situation causes one of
the intermediate nodes to be faulty. We describe the process of
selecting an (n - 1)-cube as selecting a dimension for splitting
the n-cube into two (n - 1)-cubes such that one of these two
(n - 1)-cubes satisfies the above three criteria. Thus, the first
criterion essentially prevents one (or two) dimension(s) which
is (or are) internal to these two faulty nodes from being se-
lected. The second criterion states that if the selected
(n - 1)-cube contains both the faulty nodes separated by a
distance of 2, the nodes adjacent to both faulty nodes also must
be replaced since each of the vertices of an (n - 1)-cube must
have a degree of n - 1. In other words, we replace the 2-cube
in Q,+l spanned by these two faulty nodes by the correspond-
ing 2-cube in the Note that the replacing nodes must also
have a degree of at least n - 1. Thus, Criterion 3 is applied to
avoid the replacing nodes having a degree less than n - 1, Le.,
having more than one faulty neighbor.

EXAMPLE 3. We consider a 5-cube with six faulty nodes as
shown in Fig. 6. Here, dimensions 0 and 2 are not selected
due to faulty nodes 11001 and 11 100, and dimensions 1 and
3 are not selected due to faulty nodes 11100 and 10110.
Thus, dimension 4 is selected with the 4-cube O**** since it
contains only two faulty nodes, whose distance is 2. The
only way to form a fault-free 4-cube is to replace the 2-cube

2) If

THEOREM 3. Given any two faulty nodes in an n-cube, two
O-cubes and one d-cubefor all d = 2 to n - 1 Can be Con-
structed.

When compared to the corresponding results in Section 111,
it can be seen that a 2-fault situation in an irregular subcube

,** by loo**. However, one of the replacing nodes,
1OOO1, has two faulty neighhbors 10101 and 11001. Since
both of the nodes 00001 and 10001 have two faulty neigh-
bars, we can't form a fault-free i"Wlar 4-Cube based on
either (I**** Or I****.

1114

10110

Fig. 6. Illustration of constructing irregular subcubes.

IEEE TRANSACTIONS ON COMPUTERS. VOL. 44, NO. 9. SEPTEMBER 1995

nodes can destroy all the (n - 1)-cubes. However, the simula-
tion results presented in Section VI indicate that more faulty
nodes can be tolerated in the average case for larger systems.

Subsequently, we will determine k(n, m) for m >1. The di-
vide-and-conquer technique is applied to get the lower bound
of k(n, m). For example, k(n, 2) 2 2([91)+1 because there

exists an (n - 1)-cube that contains at most faulty nodes.

However, we can prove that k(n, 2) 2 2([5q+l) , which is
very close to the value obtained by an exhaustive search of a
computer program. This result can also be used to obtain
k(n, m) for m > 2. First we need the following lemma:
LEMMA 3. k(n. 2) 2 2 ([4 + 1) for n = 5,6, or 7.
PROOF. We show this lemma by contradiction. We first assume

that there is no fault-free (n - 2)-cube in an n-cube with
2([5q+l) faults. For each dimension, we split the n-cube

Now let k(n, m) be the maximum number of faulty nodes in
an n-cube such that the proposed scheme can find a fault-free
irregular (n - m)-cube. We give our main result as follows.

THEOREM 4. k(n, 1) = for all n 2 3.

PROOF We prove the theorem by induction on n. For n = 3, it
is trivial with two faults. By induction, we assume that there
exists a fault-free (k - 1)-cube in a k-cube for k S n - 1. We
will show that there exists a fault-free (n - 1)-cube in a
faulty n-cube containing [$I faults as follows. Any dimen-
sion can be selected for splitting the n-cube and forming an
(n - 1)-cube such that all the three criteria are satisfied if
the distance between any two faulty nodes is greater than 2.
Hence, examining the case where the distance between the
pair of faulty nodes is 1 or 2 is important.

(1) Let the distance between the two faulty nodes be 1. With-
out loss of generality, we assume these two faulty nodes are
lo"-' and 00"'. Note that the dimension that spans lo"-' and
OO"-' is n - 1. We consider the original n-cube as an
(n - 1)-cube in which the vertices are called supemodes
consisting of two original nodes across the dimension n - 1.
We say that a supernode is faulty if it contains at least one
faulty original node. Thus, this (n - 1)-cube contains at most

faulty supernodes. By induction there exists a fault-
free (n - 2)-cube. Since each node of the (n - 2)-cube is a
1-cube, an (n - 1)-cube is thus formed.

(2) Let the distance between the two faulty nodes be 2. With-
out loss of generality, we assume these two faulty nodes are
110"-2 and 000". The dimensions which span these two
faulty nodes are n-1 and n-2. Similarly as in (l), we con-
sider the original n-cube as an (n - 2)-cube in which the su-
pernodes are composed of original 2-cubes across the di-
mensions n - 1 and n - 2. Thus, the (n - 2)-cube contains at
most faulty supernodes. By induction, there exists an

0
Theorem 4 also states that in the worst case [$l+l faulty

(n - 1)-cube and the theorem is proved.

into two (n-1)-cubes. We will examine whether these two
(n-1)-cubes contain the same number of faulty nodes, i.e.
[*I+ 1 faulty nodes. Then we examine whether there ex-
ists a fault-free (n - 2)-cube in these two (n - 1)-cubes.

(1) n = 5 : We first create a set of faulty nodes such that the two
4-cubes1 0*4 and 1 *4 contain three faulty nodes and no fault-
free 3-cubes are available in 0*4 and l*4. Without loss of
generality, we assume that the 4-cube 0*4 contains three
faulty nodesfi = OoooO,f2 = 0001 1, andf3 = 01 100, and 1*4
contains three faulty nodesf4 = 10000 CI3 e,fs = 10011 CI3 e,
and fs = 11100 @ e, where e = O13121110, li = 0 or 1 for
0 I i I 3) , and CB is the bitwise exclusive-or operation. Since
we want two 4-cubes obtained from splitting the 5-cube at
any dimension to contain the same number of faulty nodes,
e must be 11111. By examining dimension 0, we see that
there exists a fault-free 3-cube in *40 which contains faulty
nodes fi = OoooO, f3 = 00011, and fs = 11100, when
e = 01 11 1. This is a contradiction. Thus the lemma follows.

(2) n = 6 and 7: The proofs are similar to (1) and thus omitted.
0

LEMMA 4. k(n, 2) 1 2([91+1) for n 2 5 .

PROOF. We prove this lemma by induction on n. The basis of
the induction is proven in Lemma 3. We then assume that
the lemma follows for the hypercube of size n - 1 or less.
According to Theorem 4, [?l+l faulty nodes can prevent
all the n dimensions from being selected for splitting the
n-cube and forming an (n - 1)-cube. We first examine the
dimension n - 1, i.e. the (n - 1)-cubes, O**l and l**l.
Without loss of generality, we assume that the faulty nodes
in l**' arefi = 0" and& = 0"-21 1 which prevent dimensions
0 and 1 from being selected. We also assume dimensions 0
and 1 are not blocked from being selected by other pairs of
nodes if n - 1 is odd. Now we examine dimensions 0 and 1.
Since blbo of fi is 00 and blbo of f2 is 11, we must have a
faulty node (sayfs) whose blbo is 10. The bit bo offs is 0 be-
cause both *"-lo and **'l must contain equal number of

CHANG AND BHUYAN: SUBCUBE FAULT TOLERANCE IN HYPERCUBE MULTIPROCESSORS 1115

faulty nodes which is [y l + l . The bit bl offs is 1 because
Dimension 1 in *"-IO should be blocked from being se-
lected. The partial address, bits n-2 to 2 offs. denoted as
yW2...y2, must be the same as that of a faulty nodef3 in O*"-'
sincefs must be less than three hops from one of the faulty
nodes in O**'. Notice thatf3 may or may not be the same as
fi. Similarly, blbo of a faulty node& in 1"' is 01 and the
partial address zbZ...zz of & is the same as that of f4 in O*%'.
The bits b,,-*...bz of faulty nodefi is equal to x,~...x~ which
is On-3. Thus, if we shrink the n-cube along dimensions 0, 1,
and n - 1, we will get an (n - 3)-cube consisting of super-
nodes that are 3-cubes. If we treat a supernode as faulty if it
contains faulty nodes, then the (n - 3)-cube contains
2 ([9 1 + 1) faulty nodes because faulty nodes fl and f2 . f3,
and fs, or f4 and fs are in the same supernode. By induction,
there exists a fault-free (n - 5)-cube consisting of 3-cubes,

0
To generalize the above result, we deduce the following

theorem.

THEOREM 5. k(n, m t l) 2 ([y1+1)2m +2"-' -1, for n 2

i.e., a fault-free (n - 2)-cube.

3 + m and m 2 1.

PROOF. By splitting the n-cube into 2*' (n - m + 1)-cubes, we
find that there must exist an (n - m + 1)-cube which con-
tains at most 2([?1) faulty nodes. According to

Lemma 4, there must exist a fault-free (n - m - 1)-cube. 0
The foregoing results provide a lower bound on the number

of faulty nodes that can be tolerated while maintaining a fault-
free (n - m - 1)-cube. The following upper bound results are
also useful.
LEMMA 5. k(n, 2) I 2n - 1 for n 1 3.
PROOF. Let the fault distribution of 2n faulty nodes be such

that no fault-free (n - 2)-cube is available. Let all the neigh-
bors of 0" and 1" be faulty. The fault distribution is sym-
metric according to the dimensions. Thus by splitting the
n-cube at any dimension, we obtain two (n - 1)-cubes, each
containing n faulty nodes. Since n - 1 faulty nodes in an
(n - 1)-cube are the neighbors of a node, all the dimensions
are prevented from being selected. Thus, in order to have a
fault-free (n - 1)-cube, the maximum number of faulty
nodes must be less than 2n. 0
Lemma 5 leads to a general result as follows:

THEOREM 6 . K(n, m) I 2 x zm-l C: - 1 for 1 I m I 1+].
Proof: Let these 2 X Cm-lq" faulty nodes be 1, 2, ..., and m

hops away from 0" and 1". Then any (n - m)-cube (eM)
contains at least 2(n - m) faulty nodes which are adjacent to
two antipodal nodes of Q-. According to Lemma 5, no

0
Finally, we summarize all the expressions of k(n, m) in Ta-

ble I based on the results of the proposed technique and the
results from [lo]. We give the results of exhaustive search

1 4

1=1

fault-free (n - m - 1)-cube is available.

algorithms (XR and XI) and the proposed algorithms (FR and
FI) for regular and irregular subcubes, respectively. It is of
interest to know the exact number of faults, k(n, m) in an
n-cube such that a fault-free m-cube is available. Table IT
shows k(n, m) of various approaches for 1 I in I n I 6 . The
values shown in the exhaustive search algorithm for regular
subcubes are obtained from [lo]. The values shown in the pro-
posed algorithms for regular and irregular subcubes are from
the divide-and-conquer approaches given in Sections I11 and
IV, respectively. Since it is hard to get the exact value of
k(n, m), we use a computer program to do the exhaustive
search for irregular (n - m)-cubes (XI).

TABLE I
EXFWSSIONS OF k(n, m) BY EXHAUSllVE SEARCH FOR REGULAR mCUBES (m),
EFFICIENT~EARCHFORREGULARm-CUBES(FR), EXHAUSllVESEARCHFOR
IRREGULAR WCUBES (Xn, EFFICIENT SEARCH FOR kREGULAR mCUBES 0

n I I PD I Y1 I

I.. 7 Y, ~ -."I U

TABLE I1
k(n, m) OF AN n-CUBE FOR 1 5 m 5 n 5 6

V. SUBCUBE ALLOCATION

In this section, we propose a two-phase fault-tolerant sub-
cube allocation strategy that allocates the regular and irregular
subcubes to the incoming tasks. Since the faults do not occur
as frequently as the processors are allocated in the system, we
assume that the faults are detected and located before the allo-
cation starts. The first phase is to construct the set of disjoint
subcubes by using the subcube partitioning technique. The
second phase is to sort the disjoint subcubes by their sizes in
an increasing order and apply the existing fault-free subcube
allocation strategy such as the Buddy strategy, etc., to each
disjoint subcube. When an incoming task requesting a d-cube
arrives in the system, starting from d-cube of the sorted dis-
joint subcubes, an available d-cube is searched and assigned to
the incoming task. The search starts with the list of disjoint
subcubes.

A. Subcube Construction Phase
In this section, we present the algorithm

Find-Disjoint-Subcubes as shown in Fig. 7 for constructing
the set of disjoint regular and irregular subcubes in a faulty
hypercube. The ifstatement in Line 1 of Fig. 7 is the condition
that terminates the recursion. If the number of faults, IFI, is
equal to the number of processors in the system then the proc-
ess stops. Otherwise, the procedure Find-n-1-cube (Fig. 8) is
invoked to find an available (n - 1)-cube. If an (n - 1)-cube

1116 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 9. SEPTEMBER 1995

exists, it is put in the Disjoint-Set. Finally,
Find-Disjoint-Subcubes is called recursively with the dimen-
sion decreased by one. If an (n - 1)-cube does not exist,
Split-n-cube in Fig. 7 is called to find a dimension at which
the n-cube is split into two (n - 1)-cubes such that the differ-
ence between the numbers of faulty processors in the two
(n - 1)-cubes is maximum. If there is a tie, the technique that
uses the weight vector to find the set of disjoint regular sub-
cubes given in Section 111 can be applied to determine the di-
mension to split. If the sets of faults in the two (n - 1)-cubes
are in Fo and F1, then two Find-Disjoint-Subcubes are called
recursively for Fo and F1, respectively.

Procedure FindDisjointSubcubes(n, F, P)
/* n is the dimension of the hypercube and F is the set of faults */
/* P is initialized as null */
begin

1 if IF1 = 2” then return;
2 Qn-l := Findnl-cube(n, F , P);
3 if an (n - l)-cube Qn-l exists then
4 DisjointSet := DisjointSet U
5
6 else
7
8 P : = P U d ;
9
10
11 endif

FindDisjointSubcubes(n - 1, F, P);

d := Splitn_cube(n, F, Po, Fl);

FindDisjointSubcubes(n - 1, Fo, P);
FindDisjointSubcubes(n - 1, F,, P);

end

Fig. 7. Finding the set of disjoint irregular subcubes.

Procedure Findnl-cube(n, F)
/* n is the dimension of the hypercube and F is the set of faults */
begin

1 f o r i = O t o n - I d o
2
3 a* ;
4 P : = P U i ;
5 ret- (Qn-1);

6 endif
7 endfor
8
9
10
11
12
13
14
15 return (Qn-1);

16 endif
17 else
18 return (Null);
19 endif

if fi = a for all f € F, o = Oor 1 then
Q ~ - , := *n-i-l- i

for all f;,f, E F and i # j do
if HammingAistance(f;,fj) = 1 or 2 then

DimSet := DimSetU dimension_spanned(fi, fj);
if i E {O,..,n- 1) and i P U DimSet then

Qn-l := construct_nl-cube(n, F, i) ;
if Qn-l # null then;

P := P U i ;

end

Fig. 8. Finding irregular (n -])-cubes.

The procedure Find-n-1-cube, given in Fig. 8, first checks
if there exists a fault-free regular (n - 1)-cube (i.e., if there
exists a dimension i such that the ith bit values of the addresses
of faulty nodes are all Os or all 1s). If there exists a fault-free
regular (n - 1)-cube, then this (n - 1)-cube is returned and the
dimension i is put in P, which is the set of dimensions that

have been processed. Otherwise, the irregular (n - 1)-cube is
searched according to the proposed subcube partitioning tech-
nique. Hamming distances of addresses of every two faulty
nodes are computed. For each pair of faulty nodes fi and &
whose Hamming distance is 1 or 2, the procedure
dimension-spanned in Line 10 of Fig. 8 computes the dimen-
sions spanning f;. and & and puts them into Dim-Set. If there
exists a dimension i that does not belong to P and Dim-Set,
then i is put in P and the (n - 1)-cube is constructed by the
procedure construct-n-l-cube(n, F, i) as follows. The n-cube
is split into two (n - 1)-cubes along dimension i. One
(n - 1)-cube is selected and the faults in the selected
(n - 1)-cube are replaced with the healthy processors in the
other (n - 1)-cube. The three criteria stated in Section IV must
be satisfied. To update the set of faults, F, the ith bits of the
addresses of faults in the selected (n - 1)-cube are comple-
mented. The following example illustrates the construction
process of procedure Find-n-1-cube. The constructed 2-cube
and 3-cube are indicated by solid lines and bold dotted lines,
respectively, in Fig. 5.
EXAMPLE 4. Consider the 4-cube in Fig. 5 with two faults, 0

and 15. There is no regular 3-cube available because the
faults are at antipodal positions. Since the Hamming dis-
tance between the two faults is 4, any dimension from 0
through 3 can be selected for constructing the irregular
3-cube by procedure construct-n-1-cube.
When procedure Find-Disjoint-Subcubes terminates, Dis-

joint-Set contains all the fault-free disjoint subcubes. The last
step is to sort the Disjoint-Set by the size of the subcubes.

Let us analyze the complexity of procedure Find-n-1-cube.
The first part that finds the regular (n - 1)-cube takes O(nlFl)
time units because we need to check the n bit values for the
address of each faulty node. The second part that finds the
irregular (n - 1)-cube takes O(nlF12) times units. Notice that
the complexity of the second part of the procedure takes into
account the time spent in checking the three criteria for select-
ing the appropriate image nodes. Thus, the complexity of pro-
cedure Find-Disjoint-Subcubes can be computed as O(n21F12).

B. Subcube Allocation Phase
The next step is to allocate fault-free subcubes to the incom-

ing tasks. To accomplish that, we propose the procedure
FaultTolerant-Subcube-Allocation given in Fig. 9. The pro-
cedure selects a subcube (A) from the set of disjoint subcubes
and uses an existing fault-free subcube allocation strategy to
allocate an available subcube from A. The deallocation proce-
dure does not change except that the subcubes are released to
the disjoint subcube from which they were allocated. The fol-
lowing example illustrates the procedure.
EXAMPLE 5: Based on Fig. 5, Disjoint-Set1 = (Qo, Qo, Q?, Q 3 }

is returned by procedure Find-Disjoint-Subcubes, or
DisjointLSet2 = {eo, Qo, Qo, Qo, Q,, Q 3 } is returned if the
intermediate nodes, such as nodes 0011, 0101, and 0110,
cannot be used to form subcubes except being used as
O-cubes. Consider the Buddy strategy as the dedicated allo-
cation strategy, and assume that the incoming task sequence

CHANG AND BHUYAN: SUBCUBE FAULT TOLERANCE IN HYPERCUBE MULTIPROCESSORS 1117

is { 1, 1, 0, 3). For Disjoint-Setl, two 1-cubes in Q2, a
0-cube in Qo, and a 3-cube in Q3 will be granted. However,
for Disjoint-Set2, a 1-cube in Q2, a 1-cube in Q3, and a
0-cube in QO are granted. In the latter case, the incoming
task requesting a 3-cube must wait for the completion of the
other tasks.

Procedure Fault-TolerantSubcubeAllocation(n, d)
/* n and d are the dimensions of the hypercube and requested subcube */
begin

for all Q, E Disjointset, from i = 1 to IDisjointSetl do
if 1Qjlr d then

Qa := Fault-FreeSubcubeAllocation(Qi, d);
if Qd # Null then

return (Qa);
endif

endfor
return (Null);

end

Fig. 9. The second phase of fault-tolerant subcube allocation.

The complexity of the two-phase fault-tolerant allocation is
analyzed as follows. To simplify the analysis, we assume the
number of the faulty nodes is O(n) and the intermediate nodes
are not used for forming different subcubes. The total number
of nodes in the disjoint subcubes formed by our proposed
technique is O(2"). Thus, the complexity of the allocation and
deallocation processes is nearly equal to that of the applied
fault-free subcube allocation strategy. For example, the Buddy
strategy with time complexity O(2") checks all the 2" nodes in
the worst case to find a fault-free subcube. Therefore, the time
complexity of the two-phase fault-tolerant subcube allocation
applying the Buddy strategy is also O(2").

The two-phase subcube allocation strategy can also be ap-
plied to fault-free hypercubes as follows. It may be observed in
[22] that the left half of the system is more fragmented than the
right half in the first-fit allocation approaches. The fust phase
is to split the n-cube into a set of subcubes, one k-cube for
1 I k I n - 1 and two 0-cubes. The second phase is the same
as the one in the faulty system described above. Although this
approach (unlike first-fit approaches) sacrifices the whole
system to be assigned as a subcube, the overall system per-
formance can be improved.

VI. SIMULATION RESULTS

In this section, we first present the simulation results on
finding a fault-free (n - 1)-cube in an n-cube containing a cer-
tain number of faulty nodes. We carry out the experiments by
randomly generating faults in an n-cube. The probabilities of
recognizing regular (n - 1)-cubes (Section 111) are compared
with the probabilities of recognizing irregular (n - 1)-cubes
based on subcube partitioning techniques.

In the simulation, each process is repeated 10000 times with
randomly located faults and then the average is computed.
Fig. 10 and Fig. 11 show the results for 8-cube and 12-cube,
respectively. Fig. 10 shows the comparison of probabilities of
recognizing fault-free 7-cubes in an 8-cube with 2 to 22 faults.
We can see that when the number of faulty nodes exceeds 5,

the probability of successful recognition of regular 7-cubes
drops under 50% and to 0% when the number of faulty nodes
reaches 10. However, the probability of successful recognition
of fault-free irregular 7-cubes drops to 0% when the number of
faulty nodes reaches 20. Fig. 11 shows similar results on a
12-cube. Comparing the two figures, it can be seen that the
probability of successful recognition of regular (n - 1)-cubes
does not increase with the system size. But the ability of rec-
ognizing irregular (n - 1)-cubes increases, because the prob-
ability that the distance between any two faulty nodes is
greater than two also increases with the system size.

Fig. 10. Probabilities of fault-free 7-cubes in an 8-cube with faults.

I
I

60.0 - ;

?
- f

t

I
Rob. I

40.0 - I

20.0
h
L

0.0
40 50

O lo "#offats

Fig. 11. Probabilities of fault-free 1 I-cubes in a 12-cube with faults.

Now, we present the simulation results and compare the
performance of the subcube allocation strategies based on the
Buddy and single Gray code strategies [4]. However, the ex-
periment can be easily extended to other strategies as well [4],
[51, 161, [7], [8]. We select the Buddy and single GC strategies
because the Buddy strategy is currently employed in the com-
mercial hypercube multiprocessors and the single GC strategy
is simple to implement. The following allocation experiments
are conducted in the simulation:

1) The straightforward regular allocation strategy, which
treats the faulty processors as being allocated perma-
nently.

2) The mod$ed regular subcube allocation strategy, which
is based on the procedure Form-SDS proposed in Sec-
tion III.

1118 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 9, SEPTEMBER 1995

3) The irregular subcube allocation strategy, which is based
on our two-phase fault-tolerant subcube allocation strat-
egy given in Section V.

4) The pessimistic irregular subcube allocation strategy,
which is the same as the irregular one except that the in-
termediate nodes cannot be used to form other disjoint
subcubes.

In the experiments, K faults are generated 20 times with
K 2 2. For each generation of K faults, 100 incoming tasks are
generated and queued. The dimensions of the requested size by
the incoming tasks are assumed to follow a given distribution
such as uniform, normal, and decreasing distributions. In ow
experiments, the residence time of the allocated subcube is
assumed to be uniformly distributed between 5 and 11. Let pi
be the probability that an incoming task requests a subcube of
size i , for 0 I i 5 D, where D is the size of the system. Thus we
have C pi = 1. The pis used in our experiments are shown in
Table 111.

TABLE III
pi OF NO= AND DECREASING DISTRIBWIONS

8-cube normal pa + p8 =

0.1639, 0.182, 0.1639, 0.12, 0.0714,

The service discipline of the system is assumed to be based
on first come, first served (FCFS). At each time unit, the sys-
tem attempts to find a fault-free subcube of the requested size
to the first task in the queue and the assigned task is removed
from the queue. After an incoming task in the system finishes,
the subcube assigned to it is released. The process continues
until all the 100 tasks are finished. Under the above simulation
model, the performance is measured in terms of completion
time (total time to complete all the 100 tasks), waiting time
(average waiting time before a task is assigned to a subcube),
and processor utilization (the percentage of a processor being
utilized per unit time). For each K faults, 20 independent runs
are performed. The average of these parameters for 20 runs is
computed and used in the plots.

The simulations without any fault are also conducted for
comparison using the Buddy and GC allocation strategies
(called nofault). It is possible that a task requests for a system
size, n-cube or (n - 1)-cube, etc., that cannot be available due
to faults in the system. Since we do not reject those tasks, we
will double (or quadruple) the residence time of the incoming
task and reduce the subcube size by one dimension (or by two)
accordingly. This gives a fair comparison and indicates the
impact of faults on the performance of the subcube allocation
strategy.

We first show the simulation results based on the Buddy
strategy. Figs. 12 and 13 show the completion time and utili-
zation of allocating 100 incoming tasks with an uniform distri-
bution of requested sizes in an 8-cube containing 2 to 12
faults. Notice that the performance of the modified regular
scheme is always better than the regular scheme. We can see

that the performance of allocating irregular subcubes is always
better than allocating regular subcubes. The pessimistic irregu-
lar approach is slightly worse than the irregular approach.
This indicates that bigger subcubes play an important role in
the allocation process. The pessimistic approach does not lose
much bigger subcubes in which the biggest possible subcube is
an (n - 1)-cube. The results for no-fault case are the best and
are not affected by the number of faults in the system.

8cube with unifom dishiWon
I

0 4 8 12
#offaults

Fig. 12. Completion time of 100 incoming tasks by the Buddy strategy.

0.30

0.25

0.20
0 4 a 12

of faults

Fig. 13. Utilization of 100 incoming tasks by the Buddy strategy.

Figs. 14 and 15 show the results for the 100 incoming tasks
with a normal distribution of requested sizes. The performance
of irregular subcubes again is found to be better than others in
the faulty systems. Figs. 16 and 17 show the results for the 100
incoming tasks with a decreasing distribution of requested
sizes. The performance of irregular subcubes also continues to
be better than others in the faulty systems.

8-cube with normal distribution

350 L[U u)o

150
0 4 a

#of faults

Fig. 14. Completion time of 100 incoming tasks by the Buddy strategy.

CHANG AND BHUYAN: SUBCUBE FAULT TOLERANCE IN HYPERCUBE MULTIPROCESSORS

028

0.26

.j O B ’ - -
4 022-
3

O X

0.18

0.16

&be with IlDnnal distribution

-

-

-

-

-

0 4 8 12
of faults

Fig. 15. Utilization of 100 incoming tasks by the Buddy strategy.

t-cube with decreasing Mibution
190, 1
180 -

.j 170
3 150 -
a

” B 140-
.-_ 130 -

120 -

110‘
0 4 8 12

X of faults

Fig. 16. Completion time of 100 incoming tasks by the Buddy strategy.

8-cube with decreasing distribution

0.30 7

0 4 8 12
of faults

Fig. 17. Utilization time of 100 incoming tasks by the Buddy strategy.

&Cubs with uniform distribution

1119

&cube with llormal distribution
300

i I

0 4 8 12
of faults

Fig. 19. Completion time of 100 incoming tasks by the single GC strategy.

The simulation results of completion time based on single
GC strategy have been shown in Figs. 18 and 19 with uniform
and normal distributions for an 8-cube system. Basically, the
curves resemble those of the Buddy strategy. The behavior is
similar for processor utilization. Notice that in some cases, the
performance of the modified regular approach is worse than
the regular approach. We also get similar characteristics in the
12-cube case.

VII. CONCLUSION

The fault-tolerant capability of a multiprocessor becomes a
critical issue when the size of the system grows. In this paper,
we have proposed some novel subcube partitioning techniques
to allocate subcubes in a faulty hypercube. The concept of
irregular subcubes is introduced to enhance subcube availabil-
ity in the presence of faults. We have shown that faults in
an n-cube can be tolerated while maintaining a fault-free
(n - 1)-cube. We have also derived the bounds on the number
of faults that can be tolerated in order to find fault-free sub-
cubes of smaller sizes. These results are superior to those ex-
isting schemes in the literature.

We have considered wormhole routing, currently employed
in commercial hypercube multiprocessors, in constructing sub-
cubes in the presence of faults. As long as the links of an ir-
regular subcube that is assigned to one task are not shared by
other subcubes, the task execution time will have an insignifi-
cant increase when compared to the time spent on running the
same task in a regular subcube. Two-phase fault-tolerant sub-
cube allocation strategy is then developed to show the effec-
tiveness of average case on our irregular subcube construction
technique. Simulation results show that two-phase subcube
allocation is superior to fault-free regular subcube allocation.

ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation under grant MIP-9002353 and by the Texas Ad-
vanced Technology Program under grant No. 999903-025.

0 4 8 12
X of faults

Fig. 18. Completion time of 100 incoming tasks by the single GC strategy.

1120 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 9, SEPTEMBER 1995

REFERENCES

L.N. Bhuyan and D.P. Agrawal, “Generalized hypercube and hyperbus
structures for a computer network,” IEEE Trans. Computers, pp. 323-
333, Apr. 1984.
nCUBE Coporation, nCUBE 2 Processor Manual, Dec. 1990.
Intel, Intel iPSCL?, Intel Scientific Computers, 1988.
M.S. Chen and K.G. Shin, “Processor allocation in an N-cube multi-
processor using gray codes,” IEEE Trans. Computers, pp. 1,396-1,407,
DE. 1987.
S. Dutt and J.P. Hayes, “Subcube allocation in hypercube computers,”
IEEE Trans. Computers, pp. 341-351, Mar. 1991.
J. Kim, C.R. Das, and W. Lin, “A top-down processor allocation scheme
for hypercube computers,” IEEE Trans. Parallel and Distributed Sys-
rems, pp. 20-30, Jan. 1991.
P.J. Chuang and N.F. Tzeng, “A fast recognition-complete processor
allocation strategy for hypercube computers,” IEEE Trans. Computers,
pp. 467-479, Apr. 1992.
Y. Chang and LN. Bhuyan, “Fault tolerant subcube allocation in hyper-
cubes,” Proc. Int’l Con$ Parallel Processing, pp. 1-132-136, Aug. 1993.
J. Hastad, T. Leighton, and M. Newman, “Fast computation using faulty
hypercubes,” Proc. 21st Ann. ACM Symp. Theory and Computing, pp.
251-263, 1989.
M. Livingston, Q. Stout, N. Graham, and F. Harary, “Subcube fault
tolerance in hypercube,” Technical report CRLTR-12-87, Univ. of
Michigan, Computing Research Lab., Sept. 1987.
B. Becker and H. Simon, “How robust is the n-cube?” Information and
Computation, pp. 162-178, 1988.
J. Bruck, R. Cypher, and D. Somker, ‘Tolerating faults in hypenubes using
subcube partitioning,” IEEE Trans. Computers, pp. 599-605, May 1992.
C. Raghavendra, P. Yang, and S. Tien, “Free dimensions-An effective
approach to achieve fault tolerance in hypercubes,” Proc. Int’l Symp.
Fault-Tolerant Computing, pp. 170-177, 1992.
O.H. Kang, S.Y. Yoon, H.S. Yoon, and J.W. Cho, “Heuristic subcube
allocation in hypercube systems,” IEICE Trans. Information and Sys-
tems, pp. 517-526, July 1992.
Q. Yang and H. Wang, “A new graph approach to minimize processor
fragmentation in hypercube multiprocessors,” IEEE Trans. Parallel and
Distributed Systems, pp. 1.165-1.171, Oct. 1993.
Y. Chang and L.N. Bhuyan, “Parallel algorithms for hypercube alloca-
tion,” Proc. Int’l Parallel Processing Symp. (IPPS), pp. 105-1 12, Apr.
1993.
S.H. Bokhari, “Communication overheads on the Intel 1PSC-2 hyper-
cube,” Intel ICASE Interim Report 10, May 1990.
M. Peercy and P. Baneqee, “Distributed algorithm for shortest-path,
deadlock-free routing and broadcasting in arbitrarily faulty hypercubes,”
Proc. Int’l Symp. Fault-Tolerant Computing, pp. 218-225, 1990.
E. Chow, H. Madan, J. Peterson, D. Grunwald, and D. Reed,
“Hyperswitch network for the hypercube computer,” Proc. Int’l Symp.
Computer Architecture, pp. 90-99, 1988.
S. Abraham and K. Padmanabhan, “Performance of the direct binary n-
cube network for multiprocessors,” IEEE Trans. Computers, pp. 1 ,OOO-
1,011. July 1989.
L.M. Ni and P.K. McKinley, “A survey of wormhole routing techniques
in direct networks,’’ Computer, vol. 26, no. 2, pp. 62-76, Feb. 1993.
D. Jokanovic, N. Shiratori, and S. Noguchi, “Fault tolerant processor
allocation in hypercube multiprocessors,” IEICE Trans. Information
and Systems, vol. E 74, no. 10, pp. 3,492-3,505, Oct. 1991.

Yeimkuan Chang received the BS degree in phys-
ics from the National Central University, Taiwan,
Republic of China, and the MS degree in computer
science from the University of Houston at Clear
Lake in 1984 and 1990, respectively. He received
the PhD degree in computer science from the Texas
A&M University in 1995. From 1986 to 1987, he
was with Lighton Inc., Taiwan, as a process engi-
neer. Currently, he is an associate professor in the
Department of Information Management at the
Chung-Hua Polytechnic Institute, Taiwan, Republic

of China. His research interests include cache coherence design for multi-
processors, fault tolerance, and interconnection networks.

Laxmi N. Bhuyan (S’81-M’82-SM’87) received the
MSc degree in electrical engineering from Sam-
balpur University, India, in 1979, and the PhD de-
gree in computer engineering from Wayne State
University, Detroit, Michigan, in 1982.

Dr. Bhuyan is currently a professor in computer
science at Texas A&M University, College Station,
Texas. He was previously with the Center for Ad-
vanced Computer Studies at University of South-
westem Louisiana. His research interests are in the
areas of computer architecture, parallel processing,

fault-tolerant computing, and performance evaluation.
Dr. Bhuyan currently serves as the area editor of Computer magazine for

systems architecture and as an editor of Parallel Computing Journal. He was
an ACM Lecturer and a Distinguished Visitor of the IEEE Computer Society.
He was the program committee chairman of the First International Sympo-
sium on High-Performance Computer Architecture (HPCA), January 1995.
He is the chair of the IEEE Computer Society Technical Committee of Com-
puter Architecture (TCCA) for 1995-96.

