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Yeimkuan Chang, Student Member, IEEE, and Laxmi N. Bhuyan, Senior Member, IEEE 

Abstract-In this paper, we study the problem of constructing 
subcubes in faulty hypercubes. First a divide-and-conquer tech- 
nique is used to form the set of disjoint subcubes in the faulty 
hypercube. The concept of irregular subcubes is then introduced 
to take advantage of advanced switching techniques, such as 
wormhole routing, to increase the sizes of the available subcubes. 
We present a subcube partitioning technique to form an irregular 
subcube of maximum size. The n-cube containing two faults is 
studied first because, in the worst case, two faults are suftlcient to 
destroy all the possible regular (n - 1)-cubes. It is shown that the 
subcube partitioning technique is able to tolerate [t1 faults while 
maintaining a fault-free (n - 1)-cube in a faulty n-cube. In gen- 
eral, we show that a fault-free (n - m - 1)-cube is guaranteed 
when there are + 1) X 2'" + 2m-' - 1 or fewer faults. We 
also develop a two-phase subcube allocation strategy in order to 
show the average case performance of our subcube construction 
technique. Extensive simulation is conducted to show the effec- 
tiveness of the two-phase subcube allocation strategy. 

Index Terms-Hypercube, subcube partitioning, fault toler- 
ance, wormhole routing. 

I. INTRODUCTION 

YPERCUBE architecture has received much attention be- H cause of its attractive properties which includes loga- 
rithmic network diameter, regularity, fault tolerance, embed- 
dability, and multitasking capability [l], [2], [3]. As the size of 
a system grows, the probability of some processors or links in 
the system failing increases. Hence, executing these hypercube 
programs in the presence of faults is a critical issue. In a nor- 
mal situation, many parallel programs are executed concur- 
rently in different subcubes allocated by the host system [4], 
[5 ] ,  [6], [7], [8]. The intent of this paper is to develop subcube 
allocation strategies in the presence of faults. 

This paper attempts to provide strategies to overcome the 
effects of faulty elements and simulate a fault-free architecture 
on the faulty system. Hastad, Leighton, and Newman [9] 
proved that, with a high probability, the faulty hypercube can 
simulate the fault-free hypercube with only a constant factor 
slowdown. Other researchers studied the fault tolerance of 
hypercubes in the worst case of fault distributions [lo], [ll],  
[ 121. The problem of determining the number of faulty proces- 
sors and faulty links in an n-cube such that no m-cube is fault- 
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free is considered in [ 101, [ 111. Another approach proposed by 
Bruck, Cypher, and Soroker [12] uses subcube partitioning. It 
has been proven that an n-cube can tolerate more than O(n) arbi- 
trarily placed faults with a constant slowdown. In [13], Raghav- 
endra, Yang, and Tien also used the subcube partitioning tech- 
nique to effectively achieve the embedding of rings, routing, and 
global operations in faulty hypercubes. However, none of the 
above studies considers the construction of subcubes to preserve 
the multitasking capability in a faulty hypercube. 

The multitasking capability of the hypercube allows several 
incoming tasks or programs to run concurrently in the system. 
Concurrency is achieved by assigning different subcubes to these 
incoming tasks. The main idea in assigning subcubes to incom- 
ing tasks is to avoid interference among different subcubes. This 
allocation problem of hypercubes has been studied in the litera- 
ture. It was introduced by Chen and Shin [4], using the Gray 
code. Other researchers have proposed different strategies to 
tackle the problem, including the maximal set of subcubes 
( M S S )  [5], free list strategy [6], tree collapse (TC) strategy [7], 
and graph-based approaches [14], [15]. The full subcube rec- 
ognition ability and the efficiency of the allocation algorithms 
are the two main issues of the hypercube allocations [ 161. 

In this paper, we address this allocation problem on the n- 
cube system with faults. We consider wormhole routing in 
addition to store-and-forward routing. The communication 
delay between any two nodes is almost the same irrespective 
of the distance between the two communicating nodes in the 
wormhole routing employed in current commercial n-cube 
systems [2], [3], [17]. This is subject to the condition that there 
is no interference of the messages on the communicating links. 
In this paper, we assume that all the faults are static and are 
detected before the reconfiguration algorithm starts. Also, we 
consider only node faults, and as a result, the links incident on 
the faulty nodes are also discarded. The faulty nodes cannot 
perform either computations or communications. 

We study how to allocate subcubes in the faulty hypercube 
and thus maintain the multitasking capability of the system. A 
subcube partitioning technique is presented to facilitate sub- 
cube construction and allocation in the presence of faults. No 
spare nodes and links are used in the process of constructing 
subcubes. By using the subcube partitioning technique, a sub- 
cube is first selected, and then the faults in the selected sub- 
cube are replaced by the fault-free neighbors in the other sub- 
cube. We first discuss the allocation with two faults since, in 
the worst case, two faults in an n-cube are sufficient to destroy 
every possible regular (n - 1)-cube. The subcube partitioning 
technique used for a two-fault case is also applied to overcome 
the situation with more than two faults. 
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Finally, we develop a two-phase fault-tolerant subcube allo- 
cation strategy in the presence of faults. The first phase is the 
reconfiguration process based on the subcube partitioning 
technique which finds the set of disjoint subcubes in a faulty 
hypercube. The second phase applies an existing fault-free 
subcube allocation strategy, such as the Buddy strategy, to 
each disjoint subcube for assigning the available fault-free 
subcubes to the incoming tasks. Simulation results using the 
Buddy and single Gray code strategies [4] also show that the 
completion time and utilization of the two-phase approaches 
are superior to non-reconfiguration approaches. 

The rest of the paper is organized as follows. Definitions 
and notations are given in Section 11. In Section 111, we show 
that the divide-and-conquer technique can be used effectively 
to form the set of disjoint subcubes. In Section IV, a subcube 
partitioning technique is proposed to construct the irregular 
subcubes. A two-phase subcube allocation strategy is pre- 
sented in Section V. The experimental results are presented in 
Section VI. Concluding remarks are given in the last section. 

11. PRELIMINARIES 

A hypercube of dimension n, denoted by Q,, consists of 2" 
nodes. Q,, can be topologically represented as an 
n-dimensional cube in which nodes are located on the 2" verti- 
ces of the cube. Each of the 2" nodes is addressed by a distinct 
binary string, Z,,-lZ-z ..lo, with bit l i  corresponding to dimension 
i and Zi E (0,  1). Two nodes are connected by a link if and 
only if their addresses differ in exactly one bit. The Hamming 
weight of a node in Q,, is defined as the number of ones in its 
address. 

Each subcube can be represented uniquely as a ternary 
string over the set (0, 1, *}, called its address, where * is a 
Don't Cure symbol. Specifically, a d-dimensional subcube Qd, 
called d-cube, has exactly d *s in its address, as it involves a 
group of 2' nodes. For example, OOO**, or equivalently 03*2, 
represents the 2-cube formed by nodes 00000, 00010, OOOO1, 
and 0001 1 in a 5-cube. We define Qi to be the d-cube that has 
the same address as Qd except that the ith bit of QA is comple- 
ment of the ith bit of Qd. So, we call Q; as the complementary 
d-cube of Qd across dimension i. We refer to the subcube de- 
fined above as a regular subcube. We also introduce the fol- 
lowing definition. 

6 7 

0 1 

Fig. 1. An example of an irregular 2-cube. 

An irregular subcube is defined as a subcube in which there 
exist one or more pairs of logically adjacent nodes such that 
the physical distance between the adjacent nodes is greater 
than one. Fig. 1 gives an example of an irregular 2-cube in a 3- 
cube with two faulty nodes. The faulty nodes, 2 and 5,  are 
marked as shaded circles. The fault-free nodes 0, 1, 3, and 6, 
marked as empty circles, are used to form the 2-cube. Since 
nodes 0 and 3 are not physically adjacent to node 6, the com- 
munication paths between 0 and 6 and between 3 and 6 go 
through nodes 4 and 7, respectively. Nodes 4 and 7 are called 
intermediate nodes and are marked as triangles. 

Efficient point-to-point routing is a key to the performance 
of hypercube multiprocessors. The current commercial hyper- 
cube multiprocessors are all based on a dimension ordered 
(e-cube) routing scheme which assumes a fault-free system [2], 
[3]. Since no hardware modification is allowed on the routers 
of existing machines, a software approach is needed to route 
the messages on faulty systems. As an example, the table- 
filling technique [18] can be applied based on the e-cube 
routing algorithm. In the table-filling method, the messages are 
routed from a source node to a destination node through the 
logical path between them. If the logical path is the same as 
the path routed by e-cube routing, no change is necessary. 
However, if they are different, an intermediate node, called a 
bypassing node, is used to receive the message and reroute it 
to the destination node. The table records whether or not a 
bypassing node is used. A centralized or distributed algorithm 
can be used to fill the table with necessary information about 
bypassing nodes. If modification on routers is allowed, slightly 
modifying the current router design can achieve an optimal 
routing performance. According to the proposed subcube par- 
titioning technique, the messages entering an input channel of 
an intermediate node always go out through a specific output 
channel in a reconfigured subcube. Therefore, the input chan- 
nel in an intermediate node is directly connected with its cor- 
responding output channel. By direct connection, we mean an 
extra setting is added in the routers such that the messages 
from an input channel are forced to go through its correspond- 
ing output channel without executing the e-cube algorithm. 

In this paper, we consider two different designs of a node in 
the hypercube multiprocessor. Each node is responsible for 
both computation and communication in the first design. The 
intermediate nodes are not used for computation and are de- 
voted entirely to communication in the reconfigured subcube. 
In the second node design, each node contains two units, 
namely, a computation unit and a communication unit that can 
operate independently [2], [3]. The communication unit often 
is called a router. The routers have the capability of forward- 
ing the messages from other routers toward the destination 
nodes. Usually there is an (n + 1) x (n + 1) crossbar switch 
inside the router, as shown in Fig. 2 [19], [20]. The switching 
interface in routers includes the control logic for enabling the 
crossbar switch. One of the input and output channels of the 
(n + 1) x (n + 1) crossbar switch is used for connection be- 
tween the computation unit and the router. When such a node 
design is used, the intermediate nodes in Fig. 1 also can be 
used to form other subcubes in addition to providing a path for 
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the irregular subcubes. Since using a crossbar is very expen- 
sive, an alternative design uses a shared-bus as a logical 
crossbar, as does the nCUBE [2]. 

Routa 

Fig. 2. Hypercube node architecture. 

The hypercube multiprocessors based on wormhole routing 
[21] is considered in this paper. Wormhole technology has 
been shown to be insensitive to the distance between the 
sender and receiver as long as there is no interference in the 
links by other messages. We will assume no such interference 
in the system and refer to this property as wormhole routing 
property. In the shared-bus router design, data is shifted in and 
out of the communication ports one bit per cycle. This bit- 
serial data is collected into a complete flit at a receive port and 
is then written to memory, if this is its destination, or it is cut- 
through to the appropriate output port if it is to be sent on to 
another node. When a flit is ready to cut-through to another 
node, it must check the next output port to see if it is ready and 
then arbitrate for the shared-bus to move the flit. Since arbi- 
tration and bus allocation can occur every cycle, and since no 
receive port will ask for a cut-through more often than every 
36 cycles (because it takes 36 cycles minimum to shift in a flit, 
as in nCUBE [2]), the possibility of two or more flits com- 
pletely arriving at one router at the same cycle is small. Thus, 
multiple input ports can cut through to different output ports 
with little or no conflict of messages and the performance dif- 
ference between a shared-bus and crossbar switch design is 
negligible. 

As stated earlier, we will address the fault-tolerant subcube 
allocation problem. In [5 ] ,  Dutt and Hayes define the maxi- 
mum set of subcubes (MSS) to be a set of disjoint free sub- 
cubes in a hypercube that is greater than or equal to all other 
sets of disjoint subcubes in the same hypercube. A set of dis- 
joint subcubes, A, is said to be greater than another set of dis- 
joint subcubes, B, if there exists an i such that for all j > i ,  the 
number of subcubes of size j in A is equal to that in B, and the 
number of subcubes of size i in A is greater than that in B. 
Thus, if we treat busy nodes as the faulty nodes in the faulty 
hypercube, the problem of determining the maximum set of 
disjoint fault-free subcubes in a faulty hypercube is equivalent 
to determining the MSS. However, determining MSS is an 

NP-complete problem [5 ] .  Hence, in this paper, we will de- 
velop an efficient algorithm to find the set of disjoint sub- 
cubes. We use a weight vector, which is defined below, to find 
the set of disjoint fault-free subcubes in a faulty hypercube. 
Although the set of disjoint fault-free subcubes found by 
means of weight vectors may not be the same as the MSS, us- 
ing weight vectors is efficient. 

We define the weight vector of an n-cube as W = (wl, w2, ..., w,,) 
where wi is the number of pairs of faulty nodes such that the 
Hamming distance between the two faulty nodes in each pair is 
i, for 1 S i I n. The weight vector W = (WI, wz, ..., wn), of an 
n-cube is said to be greater than or equal to that of another 
n-cube, Z = (zl, z2, ..., z,), if there exists an i such that for all 
j I i, wj 2 q. For example, the weight vector of a 3-cube with 
three faulty nodes, 000, 010, and 100, is (2, 1, 0) since two 
pairs of faulty nodes have a Hamming distance one and one 
pair has a Hamming distance of two. The weight vector 
(2, 1,O) is greater than that of a 3-cube containing three faulty 
nodes at 000, 101, and 11 1, which is (1, 1, 1). 

HI. CONSTRUCTION OF REGULAR SUBCUBES 

The aim of this section is two-fold. First, we find a subcube 
of the maximum size in a faulty hypercube. Secondly, we find 
the set of disjoint subcubes (SDS) such that independent in- 
coming tasks can run on these disjoint subcubes simultane- 
ously. We present an efficient algorithm for constructing SDS 
in a faulty hypercube by using weight vectors. 

Let us consider the availability of disjoint subcubes while 
there are only one or two faulty nodes in an n-cube. For an 
n-cube containing one fault, it can be split into two 
(n - 1)-cubes, one fault-free (n - 1)-cube and the other faulty 
(n - 1)-cube containing one faulty node. If the above splitting 
process continues on the faulty subcubes, we can obtain the 
SDS composing of a set of subcubes of dimensions from 0 to 
n - 1. For an n-cube containing two faults, we first discuss the 
worst case scenario; i.e., the two faulty nodes are located at 
antipodal positions of the n-cube, and as a result they destroy 
all possible (n  - 1)-cubes [lo]. In this worst 2-fault case, we 
can always obtain two faulty (n - 1)-cubes, each containing 
one faulty node. Then according to the result from 1-fault case, 
we have the SDS containing two subcubes of dimension i, for 
all i = 0 to n - 2. In general, if the Hamming distance of the 
two faulty nodes is r for 1 5 r I n, we can obtain the SDS that 
contains one subcube of dimension i for all i = r to n - 1 and 
two subcubes of dimension j for all j = 0 to r - 2. 

For an n-cube with any number of faulty nodes, the algo- 
rithm is based on the divide-and-conquer technique and is 
given in the procedure Form-SDS in Fig. 3. The n and F de- 
note the dimension and the set of faults of the hypercube, re- 
spectively. The procedure Form-Regular-n-1-cube returns a 
value d, which is a dimension index such that one of the two 
(n - 1)-cubes obtained from splitting the n-cube at dimension 
d contains the minimum number of faulty nodes compared 
with other possible (n  - 1)-cubes. We split the n-cube into two 
(n - 1)-cubes with faults Fo and F1 at dimension d.  The same 
algorithm is applied recursively to find all the fault-free sub- 
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cubes. While partitioning the n-cube, if there exist two 
(n - 1)-cubes such that both contain the same minimum num- 
ber of faults, we solve it as follows. The Hamming distance 
between any two faulty nodes in an (n - 1)-cube is first com- 
puted. We select an (n - 1)-cube whose weight vector is 
greater than or equal to the weight vector of any other 
(n - 1)-cube having the same number of faulty nodes. If there 
exist more than one (n - 1)-cubes that have the same minimum 
number of faulty nodes and same maximum weight vector, we 
select the (n - 1)-cube Q,, such that the weight vector of the 
complementary (n - 1)-cube of e,,-] is greater than or equal to 
the weight vector of the complementary (n - 1)-cube of other 
(n - 1)-cubes. However, if there is a tie again, we arbitrarily 
select one (n - 1)-cube. The reason for choosing an 
(n - 1)-cube with the maximum weight vector is that a large 
weight vector actually indicates the degree of the faulty nodes 
being close to each other. We shall see below that if the faulty 
nodes are close to each other then the probability of forming a 
large subcube inside the (n - 1)-cube becomes large. Notice 
that the two if statements in Lines 2 and 5 of Fig. 3 are the 
conditions that terminate the recursion. 

Procedure FormSDS(n, F )  
/* n is the dimension of the hypercube and F is the set of faults */ 
begin 

1 
2 
3 
4 else FormSDS(n - l,Fo); 
5 
6 
7 else FormSDS(n - 1,Fl); 

d := FormR.egularnl-cube(n, F, Fo, Fl); 
if IF01 = 0 then 

SDS := SDS U *n-d-lO*d; 

if IFTI = 0 then 
SDS := SDS U *n-d-ll*d; 

end 

Fig. 3. Forming the set of disjoint regular subcubes. 

6 7 14 15 

1 

Fig. 4. Selection of a dimension for constructing regular subcubes. 

EXAMPLE 1: Fig. 4 shows a 4-cube containing 5 faulty nodes, 
marked as shaded circles. Fig. 4a and b illustrate that the 
4-cube is split into two 3-cubes along dimensions 2 and 3, 
respectively. It may be seen that two 3-cubes, O*** of 

Fig. 4a and *1** of Fig. 4b, have the same minimum num- 
ber of faulty nodes which is 2. The 3-cube, *1* * is selected 
since the weight vector of *O**, the complementary 3-cube 
of *1**, is (2, 1, 0), which is greater than (1, 0, 2), the 
weight vector of the complementary 3-cube of O***. In 
other words, dimension 2 is selected for splitting the n-cube. 
After dimension d is selected, the procedure Form-SDS is 
continued for each (n - 1)-cube until the subcube contains 
no faults or all the processors in the subcube are faulty. 
Thus, we obtain two 2-cubes, one 1-cube, and one 0-cube, 
which are better than one 2-cube, three 1-cubes, and one 
0-cube obtained by splitting dimension 3 first. 
The time complexity of Form-SDS is analyzed as follows. 

Form-Regular-n-1-cube takes O(IF12 x n2) time units since 
O(IN2 x n) time units are used for computing the Hamming 
distance of O(lF12) pairs of faulty nodes and 2n (n - 1)-cubes 
are considered. The time taken from line 2 to line 7 in Fig. 3 
depends on the locations of faulty nodes. Consider one ex- 
treme case where an n-cube with IFI faults can only be split 
into two (n - 1)-cubes with faults each. Recursively calling 
Form-SDS log IFI times is sufficient to form the SDS. Thus, 
the time complexity of Form-SDS T(n, 14) = O(Iq2 x n2) 

+ T(n-1, y) . As a result, T(n, IFI) = O(IF13 x n2). Consider 
another extreme case where all IFI faults locate in a 
log IN-cube. Calling Form-SDS (n - log IFI) times is sufficient 
to form the SDS. Thus, the time complexity of Form-SDS 
T(n, IFI) = O((n - log IFI) x IF12 x n2). If log IFI is much smaller 
than n, the complexity of Form-SDS is O(IF12 x n3). Assume 
that IFI = O(n). The time complexity of Form-SDS is O(ns) 
since the time complexities of all the other possible cases are 
between the ones of above two extreme cases. We shall see 
that Form-SDS does not guarantee to find the maximum set of 
subcubes (MSS) introduced by Dutt and Hayes [5 ] .  However, 
our method, shown in Fig. 3, is efficient whereas finding the 
MSS is an NP-hard problem. 

Let us analyze the maximum number of faults that the pro- 
cedure Form-SDS can tolerate in order to maintain a fault-free 
subcube. After calling Form-SDS once, there exists an 
(n - 1)-cube containing at most LqJfaulty nodes. Thus 

Form-SDS can continue m times until the finally selected 
(n - m)-cube contains only one fault, for IFI I 2". Obviously, a 
fault-free (n - m - 1)-cube is available in an n-cube containing 
IFI I 2" faults, for n 2 m + 1. However, if n is much larger than 
m, we derive a better result as follows. 
LEMMA 1. Given 2"-'faulty nodes in an n-cube, there always 

exists a fault-free 1-cube except when the Hamming weights 
of the faulty nodes are all even or all odd. 

PROOF. If the two nodes at the ends of an edge are both 
healthy, the lemma follows. Next, suppose that the two 
nodes at the ends of an edge e are both faulty. Then look at 
the 2"' edges in the same dimension as e. So at least one of 
these 2"' edges has both ends healthy. The lemma follows. 
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Now suppose no edge has its two ends both healthy or both 
faulty. Therefore, a node is healthy if and only if its neigh- 
bors are all faulty. Then, all odd weighted nodes are healthy 
and all even weighted nodes are faulty or vice versa. 0 

LEMMA 2. Given 2" or fewer faulty nodes in an n-cube, where 
n 2 m + 2 and m 2 2, there always exists a healthy 
(n - m)-cube in the n-cube. 

PROOF. We only have to consider the case when there are ex- 
actly 2" faulty nodes. Since 2" 2 4, we claim that at least 
two faulty nodes have the same bit value at one or more di- 
mension of their addresses. For example, the two faulty 
nodes, 0000 and 1101, have the same bit value, 0, at di- 
mension 1. In fact, for each node, there is exactly one node, 
i.e., its corresponding antipodal node, that has a different bit 
value at all dimensions although we have 2" 2 4 faulty 
nodes. 
Let tl and t2 be faulty nodes having the same bit value at 
dimension d. We partition the n-cube into 2m (n - m)-cubes 
such that dimension d is internal to these (n - m)-cubes. So, 
some (n - m)-cube contains at least two faulty nodes tl and 
tz. As a result, some other (n - m)-cube must be completely 

THEOREM 1. There must be at least 2" + 2"2faulty nodes in 
an n-cube in order to destroy all the possible (n - m)-cubes, 
where n 2 m + 2, and m 2 2. 

PROOF. We prove that there exists an (n - m)-cube in an 
n-cube with 2" + 2"-' - 1 faulty nodes. By partitioning the 
n-cube into 2"-2 (n - m + 2)-cubes, there must exist an 
(n - m + 2)-cube which contains at most 4 faulty nodes. 
Thus, according to Lemma 2, there exists a fault-free 
(n - m)-cube in the (n - m + 2)-cube with 4 faulty nodes 
where n 2 m + 2. 0 
Theorem 1 essentially states that more faults can be toler- 

ated for maintaining a fault-free (n - m)-cube if n is much 
larger than m. The bigger the n-cube, the more the chance we 
can form a bigger subcube. The minimum number of faulty 
nodes that causes no available fault-free (n - m)-cube is 
greater than or equal to 2" + 2"-' according to Theorem 1. The 
number of faulty nodes that can be tolerated by our method is 
not as good as the lower bound provided in [lo], which is 
0(2"-' x rl.6log(n - m + 3) - 2.1 loglog(n - m + 3) - 4.51). 
However, the proposed subcube partitioning technique gives 
us an efficient way to find the subcubes, whereas no procedure 
has been provided in [ 101 for finding the subcubes to meet the 
lower bound. 

healthy. 0 

Iv. CONSTRUCTION OF IRREGULAR SUBCUBES 

In this section, we develop a subcube partitioning technique 
so that the maximum subcube size can be greatly increased for 
the same number of faulty nodes. To construct an irregular 
subcube of dimension d, the underlying principle is to find a d- 

We refer to the replacing nodes in the complementary d-cube 
as the image nodes of faulty nodes in Qd. Since the image 
nodes in the complementary d-cube of Qd replace the faulty 
nodes in Q d ,  the paths between the neighboring nodes of the 
faulty nodes and the image nodes must be fault-free. 

In the terminology of graph embedding, the subcube parti- 
tioning technique attempts to embed a fault-free (n - 1)-cube 
into a faulty n-cube. Thus, the subcube partitioning technique 
is a dilation-2 and congestion-1 embedding.l The load of this 
embedding depends on the number of faulty nodes in the sys- 
tem. The proposed subcube partitioning technique utilizes the 
unused links to form the disjoint subcubes of different sizes. 
Thus, the tasks running on the subcubes do not interfere with 
each other. For simplicity, let us start with the situation when 
there are only two faults in an n-cube. Later on, we will extend 
the results to an n-cube with more faults. It is known that two 
faulty nodes at antipodal positions are sufficient to destroy all 
the possible (n - 1)-cubes [lo]. Thus, we first demonstrate 
how our subcube partitioning technique guarantees an 
(n - 1)-cube in an n-cube with two faults. 

Without loss of generality, assume that the two faulty nodes 
in an n-cube are 0" and 1". The regular (n-1)-cube, I*"', is 
first selected. Then a fault-free irregular (n-1)-cube can be 
constructed from I*"' by replacing the faulty node 1" with its 
image node 01"' in O*"-*. The links between 01"' and its 
neighbors and the links between the neighbors of 01"' and the 
corresponding neighbors of 1" are utilized to form the fault- 
free (n-1)-cube. Let us consider the general case of an n-cube 
with two faults, fo and fi, at any locations. Assume that the 
distance betweenfo andfi is r. Then we can easily find disjoint 
regular subcubes of dimension d for r I d < n by splitting the 
n-cube across dimensions at which the bit values of fo and fi 
are the same. The remaining faulty subcube is r-dimensional 
with two faulty nodes at antipodal positions. It is easy to verify 
that the remaining faulty r-cube has no interference on these 
regular subcubes that were addressed. The following example 
shows how our technique is applied to the 2-fault case. 
EXAMPLE 2. Assume that there are two faulty nodes at antipo- 

dal positions of a 4-cube, Le., 0000 and 1111 as shown in 
Fig. 5.  First, the 3-cube 1*** is selected. Then the faulty 
node 11 11 in 1 *** is replaced by its image node 01 11 in the 
other 3-cube. An irregular 3-cube is formed by the links 
shown as bold lines and the nodes marked with Label 3 in 
the parentheses. The intermediate nodes are nodes 0011, 
0101, and 0110. Thus, intermediate nodes may or may not 
be used to form smaller disjoint subcubes depending on the 
node design. The intermediate nodes are not used to form 
other subcubes in the design where nodes are responsible 
for both computation and communication. Thus, the three 
intermediate nodes are wasted. If the intermediate nodes 
have separate routers as shown in Fig. 2, a 2-cube consisting 
of nodes 0100, 0101, 0110, and 0011 can be formed. The 
remaining 2 nodes, 0001 and 0010, form two 0-cubes. 

cube, Qd, such that the faulty nodes in Qd can be replaced by 
some neighbors in a complementary d-cube of Qd. 

AS shown in Fig. 1, the logical topology of Qd is maintained. 

1.  Dilation of an embedding is defined as the maximum physical distance 
between two logically adjacent nodes. The congestion and load of an embed- 
ding are defined as the maximum number of logical links and nodes sharing a 
physical link and node, respectively. 
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Fig. 5. Subcube allocations of 4-cube with two faults at antipodal positions. 

To generalize the above result, we first have the following 
theorem which assumes that the intermediate nodes cannot be 
used and N(n) is the set of disjoint fault-free subcubes in an 
n-cube containing two faults located at antipodal positions. 
THEOREM 2. Given two faulty nodes a t  the antipodal positions 

of an n-cube, 
"-3 

N(n) = Qn-i + N(n -2) + x(kQn-k-3). 

PROOF. Consider an n-cube with two faults 0" and 1" at antipo- 
dal positions. As stated above, an irregular (n - 1)-cube can 
be obtained by replacing the faulty node 1" in l**' with its 
image node 01"' in O*"-'. Since the n - 1 intermediate 
nodes cannot be used to construct the other subcubes, the 
remaining (n - 1)-cube can be treated as an (n - 1)-cube 
containing n + 1 faulty nodes, which are 0", Ol"', and all 
the neighbors of node 01"' in O*"-', Le., 01'01""2 for 
0 I i I n - 2. The remaining faulty (n - 1)-cube can be fur- 
ther divided into an (n - 2)-cube containing two faults at 
antipodal positions, and an (n - k)-cube containing one 
fault, for all k = 3 to n - 1. Notice that an (n - k)-cube with 
one fault leads to a group of fault-free disjoint subcube of 
dimension n - k - i, where 1 S i I n - k. If we sum all the 
subcubes of the same size up, the theorem is proved. 0 
For the node design with router, we consider the general case 

of an n-cube with two faults,& andfi, whose distance is r. Then 
we can easily find disjoint regular subcubes of dimension d for 
r I d c n by splitting the n-cube across dimensions at which the 
bit values off0 andfi are the same. The remaining faulty subcube 
is r-dimensional with two faulty nodes at antipodal positions. 
Without loss of generality, assume that faulty node& is 1-0" 
andfi is 1 T " .  An irregular (r - 1)-cube can be constructed as 
described previously by selecting the (r - 1)-cube, 1"-'0*"', and 
replacing node 1"O' with its image node, lwlOr-'. The remain- 
ing (r - 1)-cube, , can be treated as an (r  - 1)-cube with 
two faulty nodes at antipodal positions l"+'Or-' and 1"+'1"'. 
This will avoid the interference between the already constructed 
regular and irregular subcubes, and any new subcubes to be 
formed. Fig. 5 shows an example for r = 4. By induction, the 
following theorem is derived. 

k=l 

construction has similar characteristics of a 1-fault case in 
regular subcube construction. The foregoing results solve the 
worst case problem for an n-cube with two faulty nodes at an- 
tipodal positions, while maintaining a fault-free (n - 1)-cube. 
However, our aim is to find the maximum number of faulty 
nodes under our proposed subcube partitioning technique for a 
fault-free (n - 1)-cube to exist in a faulty n-cube. Remember 
that in the 2-fault case, a certain (n - 1)-cube, is first se- 
lected. By careful observation, we have the following criteria 
to select an (n - 1)-cube such that the faulty nodes in the se- 
lected (n - 1)-cube, en-,, can be replaced by the fault-free 
nodes in the complementary (n - 1)-cube, QA-l, and also the 
hypercube topology is maintained. 

1) If there are two faulty nodes that have a distance of 1 or 2 
between them, then should contain either none or 
both of these two faulty nodes. 

contains two faulty nodes that have a distance of 2 
between them, then the nodes, which are adjacent to both 
of these two faulty nodes in Q,l must be replaced by 
their fault-free image nodes in QA-l. 

3) The replacing fault-free nodes cannot have more than one 
faulty neighbor. 

Criterion 1 rules out the following two situations. First, a 
faulty node in has a faulty image node in Qw1'. This situa- 
tion causes the replacing node to be faulty. The second situa- 
tion is that the image node is fault-free, but one of the neigh- 
bors of the image node is faulty. This situation causes one of 
the intermediate nodes to be faulty. We describe the process of 
selecting an (n - 1)-cube as selecting a dimension for splitting 
the n-cube into two (n - 1)-cubes such that one of these two 
(n - 1)-cubes satisfies the above three criteria. Thus, the first 
criterion essentially prevents one (or two) dimension(s) which 
is (or are) internal to these two faulty nodes from being se- 
lected. The second criterion states that if the selected 
(n - 1)-cube contains both the faulty nodes separated by a 
distance of 2, the nodes adjacent to both faulty nodes also must 
be replaced since each of the vertices of an (n - 1)-cube must 
have a degree of n - 1. In other words, we replace the 2-cube 
in Q,+l spanned by these two faulty nodes by the correspond- 
ing 2-cube in the Note that the replacing nodes must also 
have a degree of at least n - 1. Thus, Criterion 3 is applied to 
avoid the replacing nodes having a degree less than n - 1, Le., 
having more than one faulty neighbor. 

EXAMPLE 3. We consider a 5-cube with six faulty nodes as 
shown in Fig. 6. Here, dimensions 0 and 2 are not selected 
due to faulty nodes 11001 and 11 100, and dimensions 1 and 
3 are not selected due to faulty nodes 11100 and 10110. 
Thus, dimension 4 is selected with the 4-cube O**** since it 
contains only two faulty nodes, whose distance is 2. The 
only way to form a fault-free 4-cube is to replace the 2-cube 

2) If 

THEOREM 3. Given any two faulty nodes in an n-cube, two 
O-cubes and one d-cubefor all d = 2 to n - 1 Can be Con- 
structed. 

When compared to the corresponding results in Section 111, 
it can be seen that a 2-fault situation in an irregular subcube 

,** by loo**. However, one of the replacing nodes, 
1OOO1, has two faulty neighhbors 10101 and 11001. Since 
both of the nodes 00001 and 10001 have two faulty neigh- 
bars, we can't form a fault-free i"Wlar 4-Cube based on 
either (I**** Or I****. 
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Fig. 6. Illustration of constructing irregular subcubes. 
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nodes can destroy all the (n - 1)-cubes. However, the simula- 
tion results presented in Section VI indicate that more faulty 
nodes can be tolerated in the average case for larger systems. 

Subsequently, we will determine k(n, m) for m >1. The di- 
vide-and-conquer technique is applied to get the lower bound 
of k(n, m). For example, k(n, 2) 2 2([91)+1 because there 

exists an (n - 1)-cube that contains at most faulty nodes. 

However, we can prove that k(n, 2) 2 2([5q+l) ,  which is 
very close to the value obtained by an exhaustive search of a 
computer program. This result can also be used to obtain 
k(n, m) for m > 2. First we need the following lemma: 
LEMMA 3. k(n. 2) 2 2 ( [ 4  + 1) for n = 5,6,  or 7. 
PROOF. We show this lemma by contradiction. We first assume 

that there is no fault-free (n - 2)-cube in an n-cube with 
2( [5q+l )  faults. For each dimension, we split the n-cube 

Now let k(n, m) be the maximum number of faulty nodes in 
an n-cube such that the proposed scheme can find a fault-free 
irregular (n - m)-cube. We give our main result as follows. 

THEOREM 4. k(n, 1) = for all n 2 3. 

PROOF We prove the theorem by induction on n. For n = 3, it 
is trivial with two faults. By induction, we assume that there 
exists a fault-free (k - 1)-cube in a k-cube for k S n - 1. We 
will show that there exists a fault-free (n - 1)-cube in a 
faulty n-cube containing [$I faults as follows. Any dimen- 
sion can be selected for splitting the n-cube and forming an 
(n - 1)-cube such that all the three criteria are satisfied if 
the distance between any two faulty nodes is greater than 2. 
Hence, examining the case where the distance between the 
pair of faulty nodes is 1 or 2 is important. 

(1) Let the distance between the two faulty nodes be 1. With- 
out loss of generality, we assume these two faulty nodes are 
lo"-' and 00"'. Note that the dimension that spans lo"-' and 
OO"-' is n - 1. We consider the original n-cube as an 
(n - 1)-cube in which the vertices are called supemodes 
consisting of two original nodes across the dimension n - 1. 
We say that a supernode is faulty if it contains at least one 
faulty original node. Thus, this (n - 1)-cube contains at most 

faulty supernodes. By induction there exists a fault- 
free (n - 2)-cube. Since each node of the (n - 2)-cube is a 
1-cube, an (n - 1)-cube is thus formed. 

(2) Let the distance between the two faulty nodes be 2. With- 
out loss of generality, we assume these two faulty nodes are 
110"-2 and 000". The dimensions which span these two 
faulty nodes are n-1 and n-2. Similarly as in (l), we con- 
sider the original n-cube as an (n - 2)-cube in which the su- 
pernodes are composed of original 2-cubes across the di- 
mensions n - 1 and n - 2. Thus, the (n - 2)-cube contains at 
most faulty supernodes. By induction, there exists an 

0 
Theorem 4 also states that in the worst case [$l+l faulty 

(n - 1)-cube and the theorem is proved. 

into two (n-1)-cubes. We will examine whether these two 
(n-1)-cubes contain the same number of faulty nodes, i.e. 
[*I+ 1 faulty nodes. Then we examine whether there ex- 
ists a fault-free (n - 2)-cube in these two (n - 1)-cubes. 

(1) n = 5 :  We first create a set of faulty nodes such that the two 
4-cubes1 0*4 and 1 *4 contain three faulty nodes and no fault- 
free 3-cubes are available in 0*4 and l*4. Without loss of 
generality, we assume that the 4-cube 0*4 contains three 
faulty nodesfi = OoooO,f2 = 0001 1, andf3 = 01 100, and 1*4 
contains three faulty nodesf4 = 10000 CI3 e,fs = 10011 CI3 e, 
and fs = 11100 @ e, where e = O13121110, li = 0 or 1 for 
0 I i I 3 ) ,  and CB is the bitwise exclusive-or operation. Since 
we want two 4-cubes obtained from splitting the 5-cube at 
any dimension to contain the same number of faulty nodes, 
e must be 11111. By examining dimension 0, we see that 
there exists a fault-free 3-cube in *40 which contains faulty 
nodes fi = OoooO, f3 = 00011, and fs = 11100, when 
e = 01 11 1. This is a contradiction. Thus the lemma follows. 

(2) n = 6 and 7: The proofs are similar to (1) and thus omitted. 
0 

LEMMA 4. k(n, 2) 1 2([91+1) for n 2 5 .  

PROOF. We prove this lemma by induction on n. The basis of 
the induction is proven in Lemma 3. We then assume that 
the lemma follows for the hypercube of size n - 1 or less. 
According to Theorem 4, [?l+l faulty nodes can prevent 
all the n dimensions from being selected for splitting the 
n-cube and forming an (n - 1)-cube. We first examine the 
dimension n - 1, i.e. the (n - 1)-cubes, O**l and l**l. 
Without loss of generality, we assume that the faulty nodes 
in l**' arefi = 0" and& = 0"-21 1 which prevent dimensions 
0 and 1 from being selected. We also assume dimensions 0 
and 1 are not blocked from being selected by other pairs of 
nodes if n - 1 is odd. Now we examine dimensions 0 and 1. 
Since blbo of fi is 00 and blbo of f2 is 11, we must have a 
faulty node (sayfs) whose blbo is 10. The bit bo offs is 0 be- 
cause both *"-lo and **'l must contain equal number of 
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faulty nodes which is [ y l + l .  The bit bl offs is 1 because 
Dimension 1 in *"-IO should be blocked from being se- 
lected. The partial address, bits n-2 to 2 offs. denoted as 
yW2...y2, must be the same as that of a faulty nodef3 in O*"-' 
sincefs must be less than three hops from one of the faulty 
nodes in O**'. Notice thatf3 may or may not be the same as 
fi. Similarly, blbo of a faulty node& in 1"' is 01 and the 
partial address zbZ...zz of & is the same as that of f4 in O*%'. 
The bits b,,-*...bz of faulty nodefi is equal to x,~...x~ which 
is On-3. Thus, if we shrink the n-cube along dimensions 0, 1, 
and n - 1, we will get an (n - 3)-cube consisting of super- 
nodes that are 3-cubes. If we treat a supernode as faulty if it 
contains faulty nodes, then the (n - 3)-cube contains 
2 ( [ 9 1 +  1) faulty nodes because faulty nodes fl and f2 .  f3, 
and fs, or f4 and fs are in the same supernode. By induction, 
there exists a fault-free (n - 5)-cube consisting of 3-cubes, 

0 
To generalize the above result, we deduce the following 

theorem. 

THEOREM 5. k(n, m t l )  2 ( [y1+1)2m +2"-' -1, for n 2 

i.e., a fault-free (n - 2)-cube. 

3 + m and m 2 1. 

PROOF. By splitting the n-cube into 2*' (n - m + 1)-cubes, we 
find that there must exist an (n  - m + 1)-cube which con- 
tains at most 2([?1) faulty nodes. According to 

Lemma 4, there must exist a fault-free (n - m - 1)-cube. 0 
The foregoing results provide a lower bound on the number 

of faulty nodes that can be tolerated while maintaining a fault- 
free (n - m - 1)-cube. The following upper bound results are 
also useful. 
LEMMA 5. k(n, 2) I 2n - 1 for n 1 3. 
PROOF. Let the fault distribution of 2n faulty nodes be such 

that no fault-free (n - 2)-cube is available. Let all the neigh- 
bors of 0" and 1" be faulty. The fault distribution is sym- 
metric according to the dimensions. Thus by splitting the 
n-cube at any dimension, we obtain two (n - 1)-cubes, each 
containing n faulty nodes. Since n - 1 faulty nodes in an 
(n - 1)-cube are the neighbors of a node, all the dimensions 
are prevented from being selected. Thus, in order to have a 
fault-free (n - 1)-cube, the maximum number of faulty 
nodes must be less than 2n. 0 
Lemma 5 leads to a general result as follows: 

THEOREM 6 .  K(n,  m) I 2 x zm-l C: - 1 for 1 I m I 1+]. 
Proof: Let these 2 X Cm-lq" faulty nodes be 1, 2, ..., and m 

hops away from 0" and 1". Then any (n - m)-cube (eM) 
contains at least 2(n - m) faulty nodes which are adjacent to 
two antipodal nodes of Q-. According to Lemma 5, no 

0 
Finally, we summarize all the expressions of k(n, m) in Ta- 

ble I based on the results of the proposed technique and the 
results from [lo]. We give the results of exhaustive search 

1 4  

1=1 

fault-free (n - m - 1)-cube is available. 

algorithms (XR and XI) and the proposed algorithms (FR and 
FI) for regular and irregular subcubes, respectively. It is of 
interest to know the exact number of faults, k(n, m) in an 
n-cube such that a fault-free m-cube is available. Table IT 
shows k(n, m) of various approaches for 1 I in I n I 6 .  The 
values shown in the exhaustive search algorithm for regular 
subcubes are obtained from [lo]. The values shown in the pro- 
posed algorithms for regular and irregular subcubes are from 
the divide-and-conquer approaches given in Sections I11 and 
IV, respectively. Since it is hard to get the exact value of 
k(n, m), we use a computer program to do the exhaustive 
search for irregular (n - m)-cubes (XI). 

TABLE I 
EXFWSSIONS OF k(n, m) BY EXHAUSllVE SEARCH FOR REGULAR mCUBES (m), 
EFFICIENT~EARCHFORREGULARm-CUBES(FR), EXHAUSllVESEARCHFOR 
IRREGULAR WCUBES (Xn, EFFICIENT SEARCH FOR kREGULAR mCUBES 0 

n I I PD I Y1 I 

I.. 7 Y, ~ -."I U 

TABLE I1 
k(n, m) OF AN n-CUBE FOR 1 5 m 5 n 5 6 

V. SUBCUBE ALLOCATION 

In this section, we propose a two-phase fault-tolerant sub- 
cube allocation strategy that allocates the regular and irregular 
subcubes to the incoming tasks. Since the faults do not occur 
as frequently as the processors are allocated in the system, we 
assume that the faults are detected and located before the allo- 
cation starts. The first phase is to construct the set of disjoint 
subcubes by using the subcube partitioning technique. The 
second phase is to sort the disjoint subcubes by their sizes in 
an increasing order and apply the existing fault-free subcube 
allocation strategy such as the Buddy strategy, etc., to each 
disjoint subcube. When an incoming task requesting a d-cube 
arrives in the system, starting from d-cube of the sorted dis- 
joint subcubes, an available d-cube is searched and assigned to 
the incoming task. The search starts with the list of disjoint 
subcubes. 

A. Subcube Construction Phase 
In this section, we present the algorithm 

Find-Disjoint-Subcubes as shown in Fig. 7 for constructing 
the set of disjoint regular and irregular subcubes in a faulty 
hypercube. The ifstatement in Line 1 of Fig. 7 is the condition 
that terminates the recursion. If the number of faults, IFI, is 
equal to the number of processors in the system then the proc- 
ess stops. Otherwise, the procedure Find-n-1-cube (Fig. 8) is 
invoked to find an available (n - 1)-cube. If an (n - 1)-cube 
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exists, it is put in the Disjoint-Set. Finally, 
Find-Disjoint-Subcubes is called recursively with the dimen- 
sion decreased by one. If an (n - 1)-cube does not exist, 
Split-n-cube in Fig. 7 is called to find a dimension at which 
the n-cube is split into two (n - 1)-cubes such that the differ- 
ence between the numbers of faulty processors in the two 
(n - 1)-cubes is maximum. If there is a tie, the technique that 
uses the weight vector to find the set of disjoint regular sub- 
cubes given in Section 111 can be applied to determine the di- 
mension to split. If the sets of faults in the two (n - 1)-cubes 
are in Fo and F1, then two Find-Disjoint-Subcubes are called 
recursively for Fo and F1,  respectively. 

Procedure FindDisjointSubcubes(n, F, P) 
/* n is the dimension of the hypercube and F is the set of faults */ 
/* P is initialized as null */ 
begin 

1 if IF1 = 2” then return; 
2 Qn-l := Findnl-cube(n, F ,  P);  
3 if an (n - l)-cube Qn-l exists then 
4 DisjointSet := DisjointSet U 
5 
6 else 
7 
8 P : = P U d ;  
9 
10 
11 endif 

FindDisjointSubcubes(n - 1, F, P); 

d := Splitn_cube(n, F, Po, Fl); 

FindDisjointSubcubes(n - 1, Fo, P);  
FindDisjointSubcubes(n - 1, F,, P); 

end 

Fig. 7. Finding the set of disjoint irregular subcubes. 

Procedure Findnl-cube(n, F) 
/* n is the dimension of the hypercube and F is the set of faults */ 
begin 

1 f o r i = O t o n - I d o  
2 
3 a* ; 
4 P : = P U i ;  
5 ret- (Qn-1); 

6 endif 
7 endfor 
8 
9 
10 
11 
12 
13 
14 
15 return (Qn-1); 

16 endif 
17 else 
18 return (Null); 
19 endif 

if fi = a  for all f €  F,  o = Oor 1 then 
Q ~ - ,  := *n-i-l- i 

for all f;,f, E F and i # j do 
if HammingAistance(f;,fj) = 1 or 2 then 

DimSet := DimSetU dimension_spanned(fi, fj); 
if i E {O,..,n- 1) and i P U  DimSet then 

Qn-l := construct_nl-cube(n, F, i ) ;  
if Qn-l # null then; 

P := P U i ;  

end 

Fig. 8. Finding irregular (n - ])-cubes. 

The procedure Find-n-1-cube, given in Fig. 8, first checks 
if there exists a fault-free regular (n - 1)-cube (i.e., if there 
exists a dimension i such that the ith bit values of the addresses 
of faulty nodes are all Os or all 1s). If there exists a fault-free 
regular (n - 1)-cube, then this (n - 1)-cube is returned and the 
dimension i is put in P, which is the set of dimensions that 

have been processed. Otherwise, the irregular (n - 1)-cube is 
searched according to the proposed subcube partitioning tech- 
nique. Hamming distances of addresses of every two faulty 
nodes are computed. For each pair of faulty nodes fi and & 
whose Hamming distance is 1 or 2, the procedure 
dimension-spanned in Line 10 of Fig. 8 computes the dimen- 
sions spanning f;. and & and puts them into Dim-Set. If there 
exists a dimension i that does not belong to P and Dim-Set, 
then i is put in P and the (n - 1)-cube is constructed by the 
procedure construct-n-l-cube(n, F, i) as follows. The n-cube 
is split into two (n - 1)-cubes along dimension i. One 
(n - 1)-cube is selected and the faults in the selected 
(n - 1)-cube are replaced with the healthy processors in the 
other (n - 1)-cube. The three criteria stated in Section IV must 
be satisfied. To update the set of faults, F, the ith bits of the 
addresses of faults in the selected (n - 1)-cube are comple- 
mented. The following example illustrates the construction 
process of procedure Find-n-1-cube. The constructed 2-cube 
and 3-cube are indicated by solid lines and bold dotted lines, 
respectively, in Fig. 5.  
EXAMPLE 4. Consider the 4-cube in Fig. 5 with two faults, 0 

and 15. There is no regular 3-cube available because the 
faults are at antipodal positions. Since the Hamming dis- 
tance between the two faults is 4, any dimension from 0 
through 3 can be selected for constructing the irregular 
3-cube by procedure construct-n-1-cube. 
When procedure Find-Disjoint-Subcubes terminates, Dis- 

joint-Set contains all the fault-free disjoint subcubes. The last 
step is to sort the Disjoint-Set by the size of the subcubes. 

Let us analyze the complexity of procedure Find-n-1-cube. 
The first part that finds the regular (n - 1)-cube takes O(nlFl) 
time units because we need to check the n bit values for the 
address of each faulty node. The second part that finds the 
irregular (n - 1)-cube takes O(nlF12) times units. Notice that 
the complexity of the second part of the procedure takes into 
account the time spent in checking the three criteria for select- 
ing the appropriate image nodes. Thus, the complexity of pro- 
cedure Find-Disjoint-Subcubes can be computed as O(n21F12). 

B. Subcube Allocation Phase 
The next step is to allocate fault-free subcubes to the incom- 

ing tasks. To accomplish that, we propose the procedure 
FaultTolerant-Subcube-Allocation given in Fig. 9. The pro- 
cedure selects a subcube (A) from the set of disjoint subcubes 
and uses an existing fault-free subcube allocation strategy to 
allocate an available subcube from A. The deallocation proce- 
dure does not change except that the subcubes are released to 
the disjoint subcube from which they were allocated. The fol- 
lowing example illustrates the procedure. 
EXAMPLE 5: Based on Fig. 5, Disjoint-Set1 = ( Qo, Qo, Q?, Q 3 }  

is returned by procedure Find-Disjoint-Subcubes, or 
DisjointLSet2 = {eo, Qo, Qo, Qo, Q,,  Q 3 }  is returned if the 
intermediate nodes, such as nodes 0011, 0101, and 0110, 
cannot be used to form subcubes except being used as 
O-cubes. Consider the Buddy strategy as the dedicated allo- 
cation strategy, and assume that the incoming task sequence 
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is { 1, 1, 0, 3). For Disjoint-Setl, two 1-cubes in Q2, a 
0-cube in Qo, and a 3-cube in Q3 will be granted. However, 
for Disjoint-Set2, a 1-cube in Q2, a 1-cube in Q3, and a 
0-cube in QO are granted. In the latter case, the incoming 
task requesting a 3-cube must wait for the completion of the 
other tasks. 

Procedure Fault-TolerantSubcubeAllocation(n, d) 
/* n and d are the dimensions of the hypercube and requested subcube */ 
begin 

for all Q, E Disjointset, from i = 1 to IDisjointSetl do 
if 1Qjlr d then 

Qa := Fault-FreeSubcubeAllocation(Qi, d);  
if Qd # Null then 

return (Qa); 
endif 

endfor 
return (Null); 

end 

Fig. 9. The second phase of fault-tolerant subcube allocation. 

The complexity of the two-phase fault-tolerant allocation is 
analyzed as follows. To simplify the analysis, we assume the 
number of the faulty nodes is O(n) and the intermediate nodes 
are not used for forming different subcubes. The total number 
of nodes in the disjoint subcubes formed by our proposed 
technique is O(2"). Thus, the complexity of the allocation and 
deallocation processes is nearly equal to that of the applied 
fault-free subcube allocation strategy. For example, the Buddy 
strategy with time complexity O(2") checks all the 2" nodes in 
the worst case to find a fault-free subcube. Therefore, the time 
complexity of the two-phase fault-tolerant subcube allocation 
applying the Buddy strategy is also O(2"). 

The two-phase subcube allocation strategy can also be ap- 
plied to fault-free hypercubes as follows. It may be observed in 
[22] that the left half of the system is more fragmented than the 
right half in the first-fit allocation approaches. The fust phase 
is to split the n-cube into a set of subcubes, one k-cube for 
1 I k I n - 1 and two 0-cubes. The second phase is the same 
as the one in the faulty system described above. Although this 
approach (unlike first-fit approaches) sacrifices the whole 
system to be assigned as a subcube, the overall system per- 
formance can be improved. 

VI. SIMULATION RESULTS 

In this section, we first present the simulation results on 
finding a fault-free (n - 1)-cube in an n-cube containing a cer- 
tain number of faulty nodes. We carry out the experiments by 
randomly generating faults in an n-cube. The probabilities of 
recognizing regular (n - 1)-cubes (Section 111) are compared 
with the probabilities of recognizing irregular (n - 1)-cubes 
based on subcube partitioning techniques. 

In the simulation, each process is repeated 10000 times with 
randomly located faults and then the average is computed. 
Fig. 10 and Fig. 11 show the results for 8-cube and 12-cube, 
respectively. Fig. 10 shows the comparison of probabilities of 
recognizing fault-free 7-cubes in an 8-cube with 2 to 22 faults. 
We can see that when the number of faulty nodes exceeds 5, 

the probability of successful recognition of regular 7-cubes 
drops under 50% and to 0% when the number of faulty nodes 
reaches 10. However, the probability of successful recognition 
of fault-free irregular 7-cubes drops to 0% when the number of 
faulty nodes reaches 20. Fig. 11 shows similar results on a 
12-cube. Comparing the two figures, it can be seen that the 
probability of successful recognition of regular (n - 1)-cubes 
does not increase with the system size. But the ability of rec- 
ognizing irregular (n - 1)-cubes increases, because the prob- 
ability that the distance between any two faulty nodes is 
greater than two also increases with the system size. 

Fig. 10. Probabilities of fault-free 7-cubes in an 8-cube with faults. 
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Fig. 11. Probabilities of fault-free 1 I-cubes in a 12-cube with faults. 

Now, we present the simulation results and compare the 
performance of the subcube allocation strategies based on the 
Buddy and single Gray code strategies [4]. However, the ex- 
periment can be easily extended to other strategies as well [4], 
[51, 161, [7], [8]. We select the Buddy and single GC strategies 
because the Buddy strategy is currently employed in the com- 
mercial hypercube multiprocessors and the single GC strategy 
is simple to implement. The following allocation experiments 
are conducted in the simulation: 

1) The straightforward regular allocation strategy, which 
treats the faulty processors as being allocated perma- 
nently. 

2) The mod$ed regular subcube allocation strategy, which 
is based on the procedure Form-SDS proposed in Sec- 
tion III. 
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3 )  The irregular subcube allocation strategy, which is based 
on our two-phase fault-tolerant subcube allocation strat- 
egy given in Section V. 

4) The pessimistic irregular subcube allocation strategy, 
which is the same as the irregular one except that the in- 
termediate nodes cannot be used to form other disjoint 
subcubes. 

In the experiments, K faults are generated 20 times with 
K 2 2. For each generation of K faults, 100 incoming tasks are 
generated and queued. The dimensions of the requested size by 
the incoming tasks are assumed to follow a given distribution 
such as uniform, normal, and decreasing distributions. In ow 
experiments, the residence time of the allocated subcube is 
assumed to be uniformly distributed between 5 and 11. Let pi 
be the probability that an incoming task requests a subcube of 
size i ,  for 0 I i 5 D,  where D is the size of the system. Thus we 
have C pi = 1. The pis used in our experiments are shown in 
Table 111. 

TABLE III 
pi OF NO= AND DECREASING DISTRIBWIONS 

8-cube normal pa + p8 = 

0.1639, 0.182, 0.1639, 0.12, 0.0714, 

The service discipline of the system is assumed to be based 
on first come, first served (FCFS). At each time unit, the sys- 
tem attempts to find a fault-free subcube of the requested size 
to the first task in the queue and the assigned task is removed 
from the queue. After an incoming task in the system finishes, 
the subcube assigned to it is released. The process continues 
until all the 100 tasks are finished. Under the above simulation 
model, the performance is measured in terms of completion 
time (total time to complete all the 100 tasks), waiting time 
(average waiting time before a task is assigned to a subcube), 
and processor utilization (the percentage of a processor being 
utilized per unit time). For each K faults, 20 independent runs 
are performed. The average of these parameters for 20 runs is 
computed and used in the plots. 

The simulations without any fault are also conducted for 
comparison using the Buddy and GC allocation strategies 
(called nofault). It is possible that a task requests for a system 
size, n-cube or (n - 1)-cube, etc., that cannot be available due 
to faults in the system. Since we do not reject those tasks, we 
will double (or quadruple) the residence time of the incoming 
task and reduce the subcube size by one dimension (or by two) 
accordingly. This gives a fair comparison and indicates the 
impact of faults on the performance of the subcube allocation 
strategy. 

We first show the simulation results based on the Buddy 
strategy. Figs. 12 and 13 show the completion time and utili- 
zation of allocating 100 incoming tasks with an uniform distri- 
bution of requested sizes in an 8-cube containing 2 to 12 
faults. Notice that the performance of the modified regular 
scheme is always better than the regular scheme. We can see 

that the performance of allocating irregular subcubes is always 
better than allocating regular subcubes. The pessimistic irregu- 
lar approach is slightly worse than the irregular approach. 
This indicates that bigger subcubes play an important role in 
the allocation process. The pessimistic approach does not lose 
much bigger subcubes in which the biggest possible subcube is 
an (n - 1)-cube. The results for no-fault case are the best and 
are not affected by the number of faults in the system. 
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Fig. 12. Completion time of 100 incoming tasks by the Buddy strategy. 
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Fig. 13. Utilization of 100 incoming tasks by the Buddy strategy. 

Figs. 14 and 15 show the results for the 100 incoming tasks 
with a normal distribution of requested sizes. The performance 
of irregular subcubes again is found to be better than others in 
the faulty systems. Figs. 16 and 17 show the results for the 100 
incoming tasks with a decreasing distribution of requested 
sizes. The performance of irregular subcubes also continues to 
be better than others in the faulty systems. 
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Fig. 14. Completion time of 100 incoming tasks by the Buddy strategy. 
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Fig. 15. Utilization of 100 incoming tasks by the Buddy strategy. 
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Fig. 16. Completion time of 100 incoming tasks by the Buddy strategy. 
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Fig. 17. Utilization time of 100 incoming tasks by the Buddy strategy. 
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Fig. 19. Completion time of 100 incoming tasks by the single GC strategy. 

The simulation results of completion time based on single 
GC strategy have been shown in Figs. 18 and 19 with uniform 
and normal distributions for an 8-cube system. Basically, the 
curves resemble those of the Buddy strategy. The behavior is 
similar for processor utilization. Notice that in some cases, the 
performance of the modified regular approach is worse than 
the regular approach. We also get similar characteristics in the 
12-cube case. 

VII. CONCLUSION 

The fault-tolerant capability of a multiprocessor becomes a 
critical issue when the size of the system grows. In this paper, 
we have proposed some novel subcube partitioning techniques 
to allocate subcubes in a faulty hypercube. The concept of 
irregular subcubes is introduced to enhance subcube availabil- 
ity in the presence of faults. We have shown that faults in 
an n-cube can be tolerated while maintaining a fault-free 
(n - 1)-cube. We have also derived the bounds on the number 
of faults that can be tolerated in order to find fault-free sub- 
cubes of smaller sizes. These results are superior to those ex- 
isting schemes in the literature. 

We have considered wormhole routing, currently employed 
in commercial hypercube multiprocessors, in constructing sub- 
cubes in the presence of faults. As long as the links of an ir- 
regular subcube that is assigned to one task are not shared by 
other subcubes, the task execution time will have an insignifi- 
cant increase when compared to the time spent on running the 
same task in a regular subcube. Two-phase fault-tolerant sub- 
cube allocation strategy is then developed to show the effec- 
tiveness of average case on our irregular subcube construction 
technique. Simulation results show that two-phase subcube 
allocation is superior to fault-free regular subcube allocation. 

ACKNOWLEDGMENTS 

This research was supported in part by the National Science 
Foundation under grant MIP-9002353 and by the Texas Ad- 
vanced Technology Program under grant No. 999903-025. 

0 4 8 12 
X of faults 

Fig. 18. Completion time of 100 incoming tasks by the single GC strategy. 
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